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ABSTRACT

The Naval Weapons Support Center is planning to implement a bonus system to

improve the reliability of pyrotechnic devices, The measure of effectiveness that they

wish to use to determine how to award bonuses is the reliability of pyrotechnic devices.
The data available to estimate this reliability is based on the current sampling inspection

plan in which devices are tested in different environments. The models which include

both dependence and independence assumptions between the outcomes of these tests are

implemented and estimates of overall reliability along with 95 % lower confidence bound

are obtained. The 95 % lower confidence bounds are found by bootstrapping. Using

these estimates, models for making the decision to award bonuses are discussed and

studied using Monte Carlo simulation
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I. INTRODUCTION

A. BACKGROUND

Nations spend a lot of money to establish a strong defense network. It is essential

that nations buy reliable weapons and ammunition from the contractors. To ensure re-

liability, contracts must include a lot acceptance sampling plan that specifies the minimal

acceptable quality.

The Naval Weapons Support Center purchases pyrotechnic devices. Unless other-

wise specified in the contract, the supplier is responsible to see that his devices meet all

inspection requirements as specified. The inspection requirements are particular to

characteristics of each type of device and are specified on the reference drawings and

supplemental quality assurance provisions of the contract. Any testing that needs to be

done on these devices is explained in this contract.

When nations buy weapons and ammunition from the same contractor, they would

like the quality to improve over time. As contracts are now written, contractors need

only to satisfy the requirements of the sampling inspection plan for lot acceptance.

Under such contracts, contractors have no incentive to improve the quality of items they

provide. For this reason, to improve quality, The Naval Weapons Support Center has

decided to implement a bonus system. The contractor will be awarded a bonus if the

result of the sampling inspection exceeds the minimum requirements for lot acceptance.

The Naval Weapons Support Center will begin to implement a bonus system for

pyrotechnic devices in FY91. The data available to make the decision whether to award

a bonus is based on the current sampling inspection plan. This plan is a series of de-

structive tests in different environments. The purpose of this thesis is to provide the



Naval Weapons Support Center with guidance for implementing a bonus system for

pyrotechnic devices. Once implemented, the pyrotechnic bonus system will serve as a

prototype for bonus systems for other devices.

B. PYROTECHNIC DEVICE RELIABILITY

A pyrotechnic device is a chemical and grenade ammunition. There are three cate-

gories of pyrotechnic devices. The three categories are: Aerial display, Surface display

and Grenades (Ref. 1: pp. 1-21. Samples of the Pyrotechnic devices are exposed to

various environments and then activated. The criteria for successful activation depends

on the type of device :

1. Aerial display (Ground signals, flares, airburst simulators, sub signals, signal kits,

etc.)

"Successful activation means that the item will, after simulating user environment,

successfully .......

" launch,

* have proper separation / signal ignition,

" reach desired altitude at correct angle,

" have proper parachute deployment,

" have proper display color,

" have proper display time,

" have no subsequent interference with next item.

2. Surface (Ground or Water) display (flare, hand-held signals, smoke / illume

grenades, simulators, etc.)

"Successful activation means that the item will, after simulating user environment,

successfully.

2



* have signal ignition with proper display,

" have proper display,

" have proper display time,

3. Grenades (fragmentation, defensive, white phosphors, etc.)

'Successful activation means tha" the item isill, after simulating user environment,

successfully .....

" function (high order detonation following delay),

* have proper dissipation of payload,

" have completely consumed payload.

C. PYROTECHNIC DEVICE RELIABILITY PROBLEM

Samples from any large lot of pyrotechnic devices submitted by a manufacturer must

activate after exposure to different environments. These are;

1. Manufacturer Environment,

2. Temperature and Humidity Environment,

3. Vibration Environment,

4. Altitude Environment.

All items tested are subjected to the manufacturer environment. However items are only

subjected to one of the three remaining environments : Temperature and Humidity,

Vibration or Altitude.

The sampling plan consists of using four distinct samples from a lot that can be as-

sumed (approximately) statistically independent. The items tested in each sample are

also assumed to be independent. According to the sampling plan;

* 20 items are subjected to the Manufacturer Test,

3



& 20 items are subjected to both the Temperature and Humidity Test and Man-

ufacturer Test,

* 32 items are subjected to both the Vibration Test and Manufacturer Test,

0 20 items are subjected to both Altitude Test and Manufacturer Test.

A total of 92 items are tested.

Acceptance criteria for each test are

1. Manufacturer Test : Of the 20 items; if no more than I fails to activate, the lot

passes.

2. Joint Temperature and Humidity and Manufacturer Test : Of the 20 items; if no

more than 1 fails to activate, the lot passes.

3. Joint Vibration and Manufacturer Test : Of the 32 items; if no more than 2 fails

to activate, the lot passes.

4. Joint Altitude and Manufacturer Test : Of the 20 items; if no more than 1 fails to

activate, the lot passes.

The number of failures for these tests will be summarized by the vector:

FOM, FOTH, FOV, FOA ) (1.2)

where

* FOM represents the number of failures after the manufacturer test,

" FOTH represents the number of failures after both the temperature and humidity

and manufacturer tests,

" FOV represents the number of failures after both the vibration and manufacturer

tests,

" FOA represents the number of failures after the altitude and manufacturer tests.

4



For example,

1l , 2, 1 ).(1.2)

represents, I failure in manufacturer test, I failure in the joint temperature and humidity

and manufacturer test, 2 failures in the joint vibration and manufacturer test, and 1

failure in the joint altitude and manufacturer test. It is also the maximum number of

failures in each test that still leads to lot acceptance.

The marginal distributions of the number of failures in each of the above tests are

modeled by binomial distributions. There are 24 possible realizations of the sampling

inspection; ranging from the best case with no failures to activate, to the worst case with

1, 1, 2 and 1 devices failing to activate in these tests manufacturer, temperature and

humidity, vibration and altitude respectively. These cases are tabulated in Table 1.

To award bonuses we need one measure of effectiveness for pyrotechnic devices that

can be estimated from the available data. Ideally, this measure is the reliability of the

device. However, because each of the tests are destructive, there is no one natural defi-

nition of reliability for these devices. To be on the conservative side, we define the reli-

ability of a device to be the probability that the device will activate after exposure to all

of the environments. It is not easy to estimate this reliability from the sampling plan

data. This data is incomplete in the sense that we have limited information about the

joint probability of activation after exposure to more than one environment. To try to

compensate for this lack in the data, we will use models for the joint distribution of

( FOM, FOTH, FOV, FOA ) that specify particular types of dependence between the

events that a device activates after exposure to different environments.

5



Table I. POSSIBLE CASES

CASE #'S FOM FOTH FOV FOA

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

4 0 1 0 0

5 1 0 0 0

6 0 0 1 1

7 0 1 0 1

8 0 1 1 0

9 i 0 0 1

10 1 0 1 0

11 1 1 0 0

12 0 0 2 0

13 0 1 1 1

14 1 0 1 1

15 1 1 0 1

16 1 1 1 0

17 0 0 2 1

18 0 1 2 0

19 1 0 2 0

20 1 1 1 1

21 0 1 2 1

22 1 0 2 1

23 1 1 2 0

24 1 1 2 1



Using these models and based on sampling plan data, estimates of the overall reli-

ability along with lower confidence bounds are obtained. These will be used to imple-

ment the bonus system for pyrotechnic devices. We compute the maximum likelihood

estimator ( NILE ) of the reliability by maximizing the arnpropriate likelihood; lower

confidence bounds ( LCB ) are found by bootstrapping. The M LE's are computed under

both independence and dependence assumptions. The estimation procedures assuming

independence are described in Chapter II. In Chapter III we incorporate dependence

by fitting a Log Linear Model to our data. The MLE's from Chapter II and Chapter

III lead to inappropriate results for this for this problem; thus in Chapter IV we consider

alternate and very conservative estimates of reliability. Using the estimates of Chapter

IV, we investigate a sequential scheme for making the decision to award bonuses in

Chapter V. The results of simulations are presented in Chapter VI. Finally, conclusions

and recommendations are given in Chapter VII.



11. THE ESTIMATION OF THE MAXIMUM LIKELIHOOD ESTIMATOR

(MLE) OF THE RELIABILITY WITH INDEPENDENCE ASSUMPTION

A. DEFINITIONS

We will say that a device survives environment E , if it is still potentially capable of

activation after exposure to environment E . Let,

" E, be the device activates after exposure to Manufacturer environment,

" E be the device activates after exposure to Temperature and Humidity environ-

ment,

" E be the device activates after exposure to Vibration environment,

" E, be the device activates after exposure to Altitude environment.

We define the reliability of device as below,

R = P(E, Fn 1"E 3 [E 4 ). (2.1)

In this formula, R means the probability that a device activates after exposure to four

environments. We will estimate R for each of the 24 cases which lead to lot acceptance.

Let Q, = P ( E, ) be the probability that device activates after exposure to environ-

ment i, for i = 1, 2, 3, 4. In the acceptance sampling plan several of the items must

activate after exposure to a joint manufacturer and another environment. To avoid

confusion we will denote tests I through 4 as the manufacturer test, the joint temper-

ature humidity and manufacturer test, the joint vibration and manufacturer test and

joint altitude and manufacturer test respectively.

8



Let

R, = P(EI) = Q, (2.2)

and let

Ri= P(E f Ei) . (2.3)

iere R, is the probability that a device survives test i for i = 1, 2, 3, 4. The simplest

model is to assume that E, E2, E, E4 are independent. If we assume that E,,... , E4

are independent then

R1 = QI Qj (2.4)

for i = 2, 3, 4 and the reliability of device is,

R = Q1 Q2 Q3 Q4 . (2.5)

B. THE LIKELIHOOD EQUATION

Let

* X, be the number of devices that activate after test i,

* n, be the number of items given test i.

Then X, is binomial with parameters R, and n, for i= 1, 2, 3, 4. Under the assumption

of independence the joint likelihood function of observing X,1 = x, .... , X. = x4 is

4

L(x 1 , x 2 ,x 3 ,x4 R1 ,R 2 , R 3 , R4 ) = j(l R ( I - Ri )n (2.6)

xi

9=



with constraints

o0 R, R I
o < R2  R1,

0< R3 < R1,

0 R4  R1.

Our aim is to maximize this likelihood function subject to the constraints that

(RI, R,, R,, &)ES where

S = {(R 1, R2, R 3, R4 ): 0 < R, < 1, 0 < R. < R, i = 2, 3,4}.

From the equation (2.6), we see that maximizing L is equivalent to maximizing

4

= Z{(xi In R,) + (n i - x1) In( 1-Ri)}, (2.7)

,,here the constant multipliers () for i = 1, 2, 3, 4 have been dropped ( because they

do not effect the maximization procedure ) and the natural logarithm of L is taken.

We first show that I is a concave function. To show that I is a concave function,

we can show - I is a convex function. According to Theorem 3.3.6 [Ref. 2: p. 92],

by looking at its Hessian matrix, we can learn whether function is convex or not. If its

Hessian matrix is positive semi-definite at each point S then function I is convex. To

create the Hessian matrix, we must calculate partial derivatives of the function - I,

1 I Xi ni - Xi (2.8)
a Ri - R1 - Ri

10



- = + 2 (2.9)
22 1 - Ri2

-R 2 0 i j. (2.10)a Ri Rj

Then, the deterninant of the Hessian is:

4

IL (2.11)
SR1 1 -Ri 2

i=1

Clearly we can see that for O < R, < I i = 1,2,3,4, H I is always positive. Because

I is continuous, this implies that - 1 is a convex function on S. As a result of this,

l is a concave function.

We note that with the constraints on the probabilities R, ... , R4 , there does not

in general exist a closed form solution to MLE. However, with only 24 realizations of

x, ... , x, of interest, the estimated reliabilities for these 24 cases can be found with

some rather tedious but straight-forward computations.

C. COMPUTING THE MAXIMUM LIKELIHOOD ESTIMATORS AND LOWER

CONFIDENCE BOUNDS

Because I is concave over the convex set S, if the maximum occurs in the interior

of S, it is a unique maximum and is given by

A

Sn--w" (2.12)

fori = 1,2,3,4. where

11



A A A0 _ RI  I , 0 < Ri R I

for i = 2, 3, 4.

In this case the NILE's for Q, i = 1, 2, 3, 4 are

A X
1Q, n, (2.13)

xi
A fl
Q- xl (2.14)

nI

for i = 2, 3, 4. Finally we can estimate the reliability of the device as

A A ^ A A

R = Q1 Q2 Q3 Q4 . (2.15)

Table 2 summarizes the cases for which the M LE's can be found using (2.12) -

(2.15). When the maximum falls on the boundary of S, there is no explicit expression

for the MLE of (R, ... , R). These are the cases with the exception of ( 1 1 2 1 )

which have one failed item in the manufacturer test. This implies that h, will be less

than 1.0 . To f'md the M LE, we find the maximum of(R, .. , P,) on each of the

boundaries, compute 1 for each of these and let the MLE be the one with the largest

value of I . It is clear that in most cases several of the boundaries can be eliminated

from consideration, simplifying computation considerably.

12



Table 2. EASY AND HARD CASES

EASY CASES HARD CASES

(0 0 0) (1 0 0 0)

(0 0 0 1) (1 0 0 1)

(0 0 1 0 1 0 1 0)

(0 1 0 0) ( 1 1 0 0)

(0 0 1 1) (1 0 1 1)

(0 1 0 1) (1 1 0 1)

(0 1 1 0) (1 1 1 0)

(0 0 2 0) (1 0 2 0)

(0 1 1 1) (1 1 1 1 )

(0 0 2 1) (1 0 2 1)

(0 1 2 0) (1 1 2 0)

( 0 1 2 1)

(1 1 2 1)

D. EXAMPLES

1. Easy Case

In this example our failure vector is,

( 0 I 2 ).

13



According to this failure vector, we can write our likelihood equation by using equation

(2.6) to get

L =R ( 1 -R ) 0 R29 ( 1 - R2 )1 R 0 ( -R 3 )
2 R, ( - R4 )' (2.16)

0 <_ R 1 < 1 , 0 <Ri R 1

for i = 2, 3, 4. From the likelihood above;

A -i 20R, l 20= 1.0000
20

A X2 19
R2 - n2 - 20 0.9500

A X3 30
R3 - n - 32 -0.9375

A X4 19
R<4 N 20 0.9500. (2.17)

Results imply that all R,'s for i = 2, 3, 4 are between 0.0 and R1, which means that

constraints are met. Now we can estimate Q's using equations (2.13) and (2.14).

Q, = 1.0000
Q 0.9500 = 0.9500

1
0.9375 (2.18)

Q3 = I = 0.9375

Q=0.9500 = 0.9500.

And finally, reliability of the device can be estimated by using equation (2.15)

14



R = ( 1.0000)(0.9500)(0.9375)(0.9500) = 0.84609375. (2.19)

2. Hard Case

In this example our failure vector is

1 0 2 1)

According to this failure vector, we can write our likelihood equation by using equation

(2.6) as

L = R 19 ( -R, )' R 21 ( I - R 2 )0R0( I R3 )2 Rg 19 1 -R4 ) (2.20)

0 < RI < 1 , 0 <R, _R1

for i = 2, 3, 4. From the likelihood above;

X1  19
- = 0.9500n_ 20

- -= 1.0000
n2 20

*x 3  30
x - 30 0.9375

n3 32

X__ 19
- 29 0.9500. (2.21)n4 20

As you see from the above -- > thus, the MLE does not lie in the interior of S.n. n

We begin by considering the boundary
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R, = R2 = R 3 = R4

The likelihood equation on this boundary is,

L = R 8 ( 1 - R, )4 (2.22)

0 < R! R 1

From the likelihood equation,

A A A

R 1 = R2 = R3 = R4  -8 = 0.9565.92

Then value of the likelihood with these estimated R,'s is

88 )84 )4 -7(L 92 192- 10-  (2.23)

For the boundary

R, = R2 = R3 , R4 < R2,

the likelihood equation is,

L = R 9 ( - R1 )3 I 9( R4 1 ) (2.24)

0 <R 1 0 < R .

From the likelihood equation,

A A A 69 A 19
RI = R2 = R 3 - 72 0.9583 R4 20 0.9500

72
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and the value of the likelihood with these estimated R,'s is

69 )69 3 )3 19 ),19 1 i1 .(.5
69)(9 ( ( --) ( - 1 = 0.723 x 10-7 .  (2.25)

For the boundarv

R 1 = R 2 = R4 , R3 _< R,

the likelihood equation is,

L = R, 8 ( 1 - R1 )2 R30 ( 1- R3 )2 (2.26)

0 _ R1  1 0 _ R 3 <R 1 .

From the likelihood equation,

A A A 58P, = R2 =R 4  - = 0.9666

A 30
R3 32 0.9375.

Then value of the likelihood with these estimated R,'s is

58 58 2 )2 30 )30 2 07
L (-- (-6- (2 3 =0.876 x 10- . (2.27)

For the boundary

R, = R 3 = R 4 , R 2 < R1,

the likelihood equation is,

17



L = RI ( 1 - R, )'R2°  (2.28)

0 RI _ 1 0 R2  <R,.

Clearly L is maximized on the boundary of the constraints (2.28), i.e. on another of the

boundaries of S thus we can eleminate this case from consideration. For the boundary

R1 = R 2 , R3 < R, , R4 < R1,

the likelihood equation is,

L 3= R 9 ( 1- R, )'R30 ( 1 -1 R3 )2 R 9 ( 1 -- R 4 )1  (2.29)

0 <R. <1 1 0 _< R3  R, 0 < R4 <R 1 .

From the likelihood equation,

A A 39 A 30 A 19
R, = R2  -= 0.9750 R3 - -3 - 0.9375 R4- 2 - 0.9500.

Then value of the likelihood with these estimated R,'s is

39 1 30 )30 .2 )2 19 )19 2.9_ _1

( 9 ()3-9 ( I( ( 9.9 x 0 7 2 .30)

Quick inspection reveals that the remaining boundaries can be eliminated from consid-

eration.

After boundary analysis, we can see that equation (2.30) gives us the maximum

likelihood value. Thus the MLE's for R , R2, R3, P, are

A

R= 0.9750

18



A

R2 = 0.9750

A

R 3 = 0.9375

A

R4 = 0.9500.

Now we can estimate Q,'s with equations (2.13) and (2.14)

Q, = 0.9750

0.9750Q2-019750 =1.0000

0.9375 = 0.9615 (2.31)
0.9750

Q4 0.9500 - 0.9744.
=019750

And finally reliability of the device can be estimated by using equation (2.15)

R = (0.9750)( 1.0000)(0.9615)(0.9744) = 0.91346100. (2.32)

We computed MLE's with a FORTRAN program MLEA given in Appendix

A. After 24 replications of this program, we can estimate h, 's for i = 1, 2, 3, 4 for each

of the 24 outcomes of the sampling plan that lead to lot acceptance. These are given in

Table 3, h is given in Table 4.

We compute lower confidence bounds for each possible case by bootstrapping.

The bo..;:strap can be used to produce approximate confidence intervals in an automatic

way. There are several ways to set approximate confider-cc intervals with bootstrapping.

These are the percentile method, the standard method, the bias-corrected percentile

method and the nonparametric method [Ref. 3 : pp. 67-70). Let 0 be an unknown pa-

rameter with estimator b. To bootstrap, samples are generated using b in place of the
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unknown parameter 0. For each of these samples an estimator 6" is computed. We

define ((s) to be the parametric bootstrap cumulative distribution function of 0", i.e.

G(s) is the empirical distribution of the 0-s. All methods mentioned above use

percentiles of G to define the confidence interval. They differ in which percentiles are

used. The percentile method was used in our calculations.

If we use the notation 6 ( a) for the level a endpoint of one sided lower confi-

dence interval for 0, then

P[0(a) 0] -=0. (2.33)

An estimate of 0 ( a) from the bootstrap cumulative distribution is given by

0x)=G () (2.34)

To get LCB's for R, for each of the 24 realizations of the sampling plan , we

generate bootstrap samples of random failure vectors, in which failures come from in-

dependent binomial distribution with parameters ( n,, Ri for i = 1, 2, 3, 4. This is done

using the FORTRAN program RANVEC [Ref. 4] in Appendix B. We generate 5000

failure vectors for each case. And then we estimate R 's from each of the 5000 failure

vectors by the means of the program MLEA. The next step is to compute the order

statistics of h 's from A, to h5 . We get the parametric bootstrap cumulative distrib-

ution function ( i.e. the empricai distribution of R1 , .-. , ) with this computation.

This is done using the FORTRAN program SORT in Appendix C.

Finally we can get the 95 % lower confidence bound using equation (2.34) from

this routine. Reliabilities and 95 % lower confidence bounds are listed in Table 4. Re-

suits in Table 4 are given in descending order and h's and LCB's are not ordered as we

expected them to be. For example, the failure vector that has the maximum number of
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failure in each test is in the middle of the table with respect to R. It has also a bigger

95 % LCB than the failure vector that has a total of 3 failed items in each of the joint

tests. These results are counter-intuitive because we expect that more failures indicate

a lower overall reliability. This is reasonable because it is likely that a device that is

poorly constructed is more likely to fail in any of the four environments. From the re-

sults in Table 4, it is clear that an attempt to model dependence must be made in order

to get believable estimates of R.
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Table 3. TEST PROBABILITIES ( A)

CASE h3

0 0 00 ) 1.0000000 1.0000000 1.0000000 1.0000000

0 0 0 I) 1.0000000 1.0000000 1.0000000 0.9500000

0 a10) 1.0000000 1.0000000 0.9687500 0.1.00000

0 1 0 0) 1.0000000 0.9500000 1.0000000 1.0000000

1 0 0 0) 0.9891304 0.9891304 0.9891304 0.9891304

0 0 1 1) 1.0000000 1.0000000 0.9687500 0.9500000

0 1 0 1) 1.0000000 0.9500000 1.0000000 0.9500000

0 11 0) 1.0000000 0.9500000 1.9687500 1.0000000

(1 0 0 1) 0.9861111 0.9861111 0.9861111 0.9500000

(1 0 1 0) 0.9833333 0.9833333 0.9687500 0.9833333

( 1 100) 0.9861111 0.9500000 0.9861111 0.9861111

0 0 2 0) 1.0000000 1.0000000 0.9375000 1.0000000

0 1 11 ) 1.0000000 0.9500000 0.9687500 0.9500000

(1 0 ! I ) 0.9750000 0.9750000 0.9687500 0.9500000

( I 1 0 1) 0.9807692 0.9500000 0.9807692 0.9500000

( I 1 0) 0.9750000 0.9500000 0.9687500 0.9750000

( 0 0 2 1) 1.0000000 1.0000000 0.9375000 0.9500000

(0 1 2 0) 1.0000000 0.9500000 0.9375000 1.0000000

(1 0 2 0 ) 0.9833333 0.9833333 0.9375000 0.9833333

( I I 1) 0.9615384 0.9500000 0.9615384 0.9500000

( 0 1 2 1) 1.0000000 0.9500000 0.9375000 0.9500000

(1 0 2 1) 0.9750000 0.9750000 0.9375000 0.9500000

(11 2 0) 0.9750000 0.9500000 0.9375000 0.9750000

1 I 2 1 ' 0.9500000 0.9500000 0.9375000 0.9500000
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Table 4. RELIABILITIES AND 95 % LOWER CONFIDENCE BOUNDS
(A)

FAILURE k FAILURE 95 % LCB
VECTOR VECTOR

(0000) 1.0000000 ( 0000) 1.0000000

(1000) 0.9891304 ( 00 10) 0.9062500

(00 10) 0.9687500 ( 1000) 0.9000000

(10 10) 0.9687499 ( 0020) 0.8750000

(000 1) 0.9500000 ( 10 10) 0.8550000

(0 100) 0.9500000 ( 000 1) 0.8500000

(100 1) 0.9499999 ( 0 1 00) 0.8500000

(I 100) 0.9499999 ( 100 1) 0.8282812

(10 1 1) 0.9439102 ( 1 100) 0.8258822

( I 110) 0.9439102 (0 1 10) 0.8234775

( 11 1) 0.9385999 (00 1 1) 0.8234375

(0020) 0.9375000 ( 1020) 0.8125000

(1020) 0.9374999 ( 1 0 1 1) 0.8015624

(1 1 2 1 ) 0.937499 (0 1 0 1) 0.8000000

(00 11) 0.9203125 (1110) 0.8000000

(01 10) 0.9203125 (0 120) 0.7875000

( 1 0 1) 0.9201959 (002 1) 0.7749999

(102 1) 0.9134614 (1 1 0 1) 0.7749018

( 120) 0.9134614 (1 1 1 1) 0.7649999

(0 1 0 1) 0.9025000 (1 02 1) 0.7647058

( 002 1) 0.8906249 (1 120) 0.7614843

( 0 120) 0.8906249 ( 1 2 1) 0.7505192

(01 1) 0.8742968 (0 1 1 1) 0.7499999

(0 12 1) 0.8460937 (0 1 2 1) 0.7171874
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III. LOG LINEAR MODEL WITH DEPENDENCE ASSUMPTION

A. BACKGROUND

Modeling the outcomes of the various environmental tests as independent is clearly

inappropriate. However, the nature of the acceptance sampling plan makes it impossible

to estimate the reliability of the device ( i.e. the probability that it would activate after

exposure to all four environments ) without some assumptions about the dependence

between outcomes of various tests. Thus, our second approach is to model the

pyrotechnic device reliability with a log linear model.

The results of our test series create a ( 2 x 2 x 2 x 2 ) contingency table. Let p

represent passing a test and f represent failing a test.

Table 5. CONTINGENCY TABLE STRUCTURE FOR TEST SERIES

Passed Failed
Manufacturer Test Manufacturer Test

Passed Failed Passed Failed
Tem.&Hum. Tem.&Hum. Tem.&Hum. Tem.&Hum.

Test Test Test Test

Passed
Altitude Mpppp Mpfp Mom Mff;pPassed Test

Vibration
Test Failed

Altitude Mpp Mpfpf Mfoe Mffpf
Test

Passed
Altitude Mp1fp Mpffp Mfpfo Mfffp

Failed Test
Vibration

Test Failed
Altitude Mppff Mpfff Mfpff Milff

Test
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The results of our tests can be thought of as censored data from a hypothetical

( 2 X 2 X 2 X 2 ) contingency table (See Table 1). The frequency in each cell of this table

is

Afik,, (i, j, k, I) I p, f~a

the number of devices out of 92 which would have result i in environment I (manufac-

turer), result j in environment 2 (temperature and humidity alone), result k in environ-

ment 3 (vibration alone), result I in environment 4 (altitude alone).

This is a hypothetical table, because if a device was exposed to all four environments

and then failed to activate, there would be no way to discern which combination of the

four environments caused failure. The data from the acceptance sampling plan can be

thought of as censored data from such a ( 2 X 2 X 2 X 2 ) contingency table. As an

example, a device that is given just the manufacturer test belongs in one of the cells

( p, 3, k, I ) where ( 3, k, I ) E { p, f} 3, because it is not clear what would have happened

to it had it been exposed to the other three environments.

Using a log linear model under independence, the expected value of each cell fre-

quency is

E[ M ijk,] eM+A : + +4+4 (3.1)

where i, j, k, I = p, f and

p). (3.2)

for i = 1, 2, 3, 4. 1 lere the parameter A represents the overall effect and the parameters

.; represent the effect of passing environment i. It is simple to show that the log linear

model (3.1) is equivalent to the independence of the environments (Ref. 5: pp. 25-461.
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On a logarithmic scale, the independence relation is equivalent to the additive re-

lationship. As an example,

- 2 3 . (3.3)
log MIPPPP = + ).' + + ;P + ".P 3.3

Log linear models, which take into account dependence include extra interaction terms.

Because of the extreme amount of censoring, we will only consider models with two way

interaction terms of the type.

I 12 13 'I 23 24 3

E[ MjkI ' = + A'+ " + A" + A" , +)J2 + A, +A, (3.4)

where i,j,k, I = p,f,

S= - (3.5)

fori= 1, 2, 3,-4 and

pp 4 -f - 41P (3.6)

for i, j, = 1, 2, 3, 4. As an example;

S 2 3 4 12 -13 -14 2 4 3

E[ E p e+'A"+A"+ A+4k+ A,, +,, + A,, + A, +'A. (3.7)

The censored data does not tell us much about partial association between pairs of

tests. For this reason, we assume that partial associations between any pair of tests are

all the same. Let 0 be the partial association between tests. Then we can reformulate

equation (3.7) as follows:

E[ Mp - = ep +A + + +6e (3.8)
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The MLE's for the expected number of devices in each cell ( or equivalently the

MLE's for the parameters ) can not be found explicitly. The EM Algorithm ( Expecta-

tion - Maximization ) will be used to approximate the MLE's of the expected number

of devices in each cell.

B. EXPECTATION MAXIMIZATION ( ENI ) ALGORITHM

A general method of maximum likelihood estimation from incomplete data is the

E M Algorithm. The expectation maximization algorithm is an iterative procedure where

each stage consists of:

" an expectation step ( E ) followed by

" a maximization step ( M ).

This algorithm is generally used to compute maximum likelihood estimators in in-

complete data problems. In the application of the EM algorithm we:

* replace missing values by their estimated expected values given the incomplete data

• estimate parameters

o reestimate the missing values assuming the new parameter estimates are correct

" reestimate parameters

and so forth, iterating until convergence [Ref. 6: pp. 127-1411. This iterative algorithm

works as follows in pyrotechnic device problem.

i. Initialization

The algorithm requires initial guesses for the parameters of the log linear model

cell frequency in contingency table. It uses initial guesses and calculates initial cell

probabilities. We will get our initial guesses by first fitting a log linear model under in-

dependence.
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2. Iterations

- Expectation Step

EM Algorithm estimates expected cell frequencies given the data by using the

most current estimates of the parameters. It compares these estimated expected cell

frequencies with the previous estimates. If the differences between these two estimates

are small enough, then the EM Algorithm has converged. We then accept the final es-

timates of cell frequencies as MLE, so we can easily calculate cell probabilities.

m Maximization Step

If the algorithm has not converged, then it starts to estimate new parameters for

the log linear model using expected cell frequencies from the E step as if there were ac-

tual data available. Estimation is done by maximizing the likelihood using an iterative

Newton-Raphson method. The estimated parameters from this step are than used in the

next E step of the EM algorithm.

C. CALCULATIONS

We apply the EM algorithm for each realization of the failure vector ( FOM,

FOTH, FOV, FOA ). During the maximization step of the EM Algorithm, we use the

Newton-Raphson procedure which is described by SAS, [Ref. 7: pp. 190-2121. We first

describe the M step using as an example the following failure vector.

( 1 2 0)

Maximization Step

We start with initial guesses (IG) for M,jis. These are the conditional expected

values provided by the previous E step. For example, initial guesses for the failure vector

above, are shown below.
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.1pppp
NIpppf

.1pfp 83.08
0.1.1 Ippff - 3 .36

.;,Jpp 0. 10.1

IG G = 2.1(3.9)
.1 fpp 0.1

0.1

G [fpff 0.1

Mff"pf 0.1
0.1

A ffff 0.1

'Iffff

From these, we can compute the proportion of observations which fall into each cell as:

92

______ 0.9030-

92 0.0011
A M 0.0365 (310)
P = PPfP (310

92

0.0011

Mffff

92

We will use P to get MLE's for the parameters of the log linear model. Our log linear

model which includes two way interactions can be written as
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log Ppppp

log Ppppf 1 1 0(3.111log Pppfp l 1 P 1

log Pffff [ 1 1

where yT = (y, )I 1, ).) is the parameter vector and p is normalizing constant

required by the restriction that the probabilities sum to I and where P,,, is the proba-

bility corresponding to the (ij k 1)0A cell in the hypothetical contingency table. We can

derive from equation (3.11)

log Ppppp- 1 6
[ 1 1 6]log Ppppf 1 1 1 -1 0

log PPPfp =fl - (3.12)

[-1 -1 -1 -1 6 1log P

where flT = (1, , , ) is the parameter vector and 6 is normalizing constant re-

quired by the restriction that the probabilities sum to 1. Then, to use the SAS proce-

dure, we rewrite log P,,,,, log P,,,,... , log Pffff as the 15 logits, F, = (log P,,,/ log Psf),

F,, = (log P11 / log PEM) so that

log Ppppp
1 0 0 0 -1] log Ppp,

1 0 0 -1 log PPfp (3.13)

F'5 0 0 0 0 -1
0 - log Pffff
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where P = (P,,,, P,, ... , Pffff). Using equations above the following result is ob-

tained

Fl1 [2 2 2 2  0

F2 2 220-6
F(.P) (3.1 Y1

F15  00 02 -6

The design matrix (X) of this problem, from the equation (3.14) is as follows:

2222 0
2 2 2 0 -6
2 2 0 2 -6
2 2 0 0 -8
2 0 2 2 -6
2 0 2 0 -8
2 0 0 2 -8

X= 2000 -6 (3.15)
0 2 2 2 -6
0 2 2 0 -8
0 2 0 2 -8
0 2 0 0 -6
0 0 2 2 -8
0 0 2 0 -6
0 0 0 2 -6

In the application of Newton-Raphson Method, we use the variance and covariance

matrix S of F( P). It's inverse is given by

p ,rp P , 2×PPPP X PPPf -P,P X Pap

_pp pPPPXpppf PPPP 2 PPPf . .ff

~Ppppp XP~ ~ f -P 2  
* . P

S-'( P) .pppf p - PPPf" Pfffp .(3.16)

-_,, ×P, ppPPPP X p,, p**, 2}
fffP Pppj X pfffP PfffPPip
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The first estimates of parameters for the Newton-Raphson procedure are calculated

as follows:

b0 = [- xT SI (P)X Y' [ X T S-' (P) F( P)]. (3.17)

where S-1 and F are estimated using the proportions in the vector P. We estimate the

reduced logit response functions using the equation

Fo = Xbo. (3.18)

From F we can compute the updated estimates of P,,,, P .. .. , Pff Let

Fi = ( FI1 ( 1 ), I12 ( 1 ), . .. 11, ( 1) ) be the vector, which contains these estimates of

the cell probabilities. The value of the log likelihood evaluated at H- is

16

16Ex, log nl(i) (3.19)

where x, is the number of items in cell i with respect to probability in Fl.

We estimate parameters iteratively until the difference between last estimate and

previous is small enough. At each iteration we update the inverse of variance and

covariance matrix with probabilities of 1- from the previous iteration and we do fol-

lowing matrix computations.

C = XTS-I (1)X
G = XT[ 9 2 .0 x (P -l)] (2

Let b, be the next estimate of parameters f in the i th iteration. Then b, as follows:

bi = bi-, 6 -C I-G (3.21)
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where 6 : I is a constant supplied by the user.

We get first cell expectations from initialization. The failure vector, which is defined

at page 5, has initial guesses for cells which are shown in equation (3.9). After the first

application of Newton -Raphson Algorithm, we have following initial cell expectations

(CE).

82.4278259
0.7278117
3.1047230
0.1208856
2.0790358
0.0809494
0.3453168

CE 0.0592893
2.0268116 (3.22)
0.0789160
0.3366428
0.0578000
0.2254283
0.0387050

0.1651089
0.1250073

Expectation Step

The conditional expected frequency for each cell expectations are calculated using

the estimated parameters of the log linear model from the previous M step. Some of the

cell expectations formulated below

E [ MvppP I (FOM, FOTH, FOV, FOA)] (20 - FOM) x P (p p p p p ... )

* (20 - FOTHxP(ppppIpp..)(3 2 3 )
* (32 - FOV)xP(ppppjp.p.)

+ (20 - FOA)xP(pppplp..p)
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E [AIfpff I(FOM, FOTII,FOV, FOA)] = (20 - FOM) x P (pfpfl p ... )

+ (FOTH) x P (pfpfj pf..)
+ (32 - FOV)xP(pfpfJp.f.)

+ (FOA) x P(pfpfIp..f)

where . represents either a pass or fail. For example,

P (pp p p I p. .. ) is the probability that device passes all environments given that it

passed manufacturer test.

P ( p p p p I p p.. ) is the probability that a device passes all environments given that

it passed manufacturer test and temperature-humidity environment.

The conditional probabilities are computed from the estimated cell probabilities

from the previous M step. As an example, we have following failure vector,

( 1 1 2 0)

Then E[ M... 1( 1, 1, 2, 0) ] is calculated as follows:

P(p pppIp ...) 82.4278259 = 0.9267193
88.9458375

P(ppppjpp..) = 82.4278259 0954232886.3812462

P(ppppIpp.) = 824278259 0.966151685.3156228

82.4278259
P(pppplp. .p) = 87.9569015 = 0.9371388,

where the numbers come from (-,.22) the estimated cell expected values after from the

previous M step. Thus,
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E Mpppp ( 1, 1, 2, 0)] = 83.4654163

The remaining 16 conditional expectations are calculated similarly. Then we com-

pare these expectations with previous expectations. If the difference between compared

expectations are small enough then EM Algorithm is assumed to have converged.

When EM Algorithm converges, we can estimate reliability of device ( R ) after

exposure all four environments as

A

A E [ M (32
R - 92.0 (3.25)

For example, for the failure vector above, after 27 iterations, we obtain

A

E[E Mppp = 84.412714,

and

A 84.412714 = 0.9175259.
92.0

D. INITIAL GUESS PROBLEM

The EM Algorithm uses an initial guess vector as in equation (3.9). We use the

independence assumption as described in equations (3.1), (3.2) and (3.3). The following

procedures are used during the application of EM Algorithm to the log linear model with

the independence assumption.

We have still an initial guesses problen for parameters in the log linear model with

the independence assumption. For this reason, we do some calculations to find initial

guesses for the parameters. Moreover, one can choose random initial guesses for the

parameters too.
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Assume that we have the following failure vector,

( 1 0 1 0 ).

In this procedure we divide the number of devices which pass the manufacturer test

by the number of cells which include items that have passed the manufacturer test. In

this example, we can calculate M, ,, as follows:

S 19.0 2.375 items for manufacturer test
8.0

* [ 20.0 ] = 2.500 items for temperature and humidity test
8.0

[ 1=0.125 item for vibration test
8.0

-- 2 = 0.000 item for altitude test8.0

finally the expected number of device for this cell is,

Mppff = 5.000.

After computing M,,J, for each cell using the same procedure above, we can group these
cells to estimate M,,, M, , M1.o, ,., as follows:

• M,, a MM

• Mf" I = M)

where k, I = p,f.
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In this example,

Table 6. GRUOPED DATA FOR INITAL GUESS CALCULATION

TERMS ESTIMATED VALUES

Mf"o 32.500

22.500

Aff" 23.500

M10, 13.500

By combining the parameters u and ,., we have four equations and four unknown

parameters. We can easily solve for the parameters from the initial guesses.

Table 7. ESTIMATED PARAMETERS FOR INITIAL GUESS

TERMS ESTIMATED VALUES

'U + , -1.97

21 1.08

43 1.08

A4 0.56

Finally, we can split the sum of the p and ,, into two parts. One possibility is to

divide the sum by two assigning half to p and half to ,4. Results using a random initial

guess and the above procedure for an initial guess are very close. Calculation of initial

guess parameters are done by the FORTRAN program INITIAL in Appendix D and

the FORTRAN program PARAM in Appendix E.
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E. RESULTS

Reliabilities of the pyrotechnic device are calculated by a FORTRAN program

LLMDEP in Appendix F. They are given in Table 8. Results from the log linear model

design with dependence assumption are similar to the first model. We can easily see

from the previous table that the ordering of the estimates of R is counter-intuitive. We

expect (1 1 2 1 ) to yield the smallest R rather than an R = 0.934 which is larger than

R for about half of the 24 realizations of the failure vector.

It is clear from these results that this log linear model is inappropriate for modeling

the outcomes of the sampling inspection plan. More realistic models would include

three-way and four-way interaction terms. However, due to the extreme censoring in the

data, we can not estimate R for these models. Moreover, reliabilities of several cases for

even this model were not calculated because of computational limitations. Taking the

account of dependence with log linear models is clearly not a reasonable approach for

estimating reliabilities from this data.
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Table 8. RELIABILITIES WVITH LOGLINEAR MODEL

FAILURE VECTOR h

(000 0) 1.0000000

10 000) 0.9887247

(1 0 1 0) 0.9693505

100 1) 0.9518477

(1 100) 0.9503552

(1I 1 10) 0.9457148

(101 1) 0.9456805

(I I11I) 0.9399773

1 020) 0.9374950

(1 121) 0.9336501

(00 11) 0.9255090

(01 10) 0.9255087

(110 1) 0.9246104

(1 0-2 1) 0.9175486

(1120) 0.9175295

(0 10 1) 0.9089977

(002 1) 0.8978485

(0 1 20) 0.8978109

(01I 11) 0.8825021

(0 121) 0.8584540
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IV. WORST CASE SCENARIO

A. ASSOCIATION ANALYSIS

In the inspection sampling plan, failures are not assigned to an individual failure

mechanism except for the manufacturer test. For example, from the following failure

vector.

( 1 1 2 1)

We know that there is at least one failure due to the manufacturing test. There is one

failure from the joint temperature and humidity and manufacturer test, but we do not

know which failure mechanism generated this failure. Items can fail due to a manufac-

turing related failure mechanism or other failure mechanism or both. The worst case is

to assume that the cause of failure is due to all of the failure mechanisms that it was

exposed to.

Let MT represents manufacturer test, TAHT represents temperature and humidity

test, VT represents vibration test, AT represents altitude test.

Because all 92 items are exposed to manufacturer test, the worst case of the failure

analysis of the failure vector above is shown by the following table.

Table 9. FAILURE ANALYSIS

MT TAHT VT AT

# OF TESTED ITEMS 92 20 32 20

# OF SUCCESFUL 87 19 30 19
ITEMS

This " worst case " scenario should give us lower bounds for the estimates R of R.
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If we calculate the reliability of series system assuming failure mechanisms in test

are independent when in fact they are associated but not independent, then we underes-

timate system reliability. It is reasonable to expect that there is positive dependence

between four tests. If one item fails in manufacturer test, it is more likely to fail in other

tests. One way of modelling positive dependance between tests is to assume that tests

are positively quadrant dependent.

Given random variables T . ...., T. The, are said to be positively quadrant de-

:.'2 ,-t iPQL)) IRet 8: p. 33], if

n

P( T, _ ... , T _ In) H fJP( Ti _< [1) (4.1)
i=1

for all ( t, t2, ..., t,) E R". An equivalent formulation of positive quadrant depend-

ence is T, T2, ... P, /'are PQD iff

n

P( T1 > t, ... , T" > t,) P T > ti) (4.2)

for all (it, t2 . , t,) e R,. The proof that (4.1) and (4.2) are equivalent as given in

[Ref. 8: pp. 32-331.

We may take account positive dependence between tests with the PQD assumption.

Let

1, if an item passes environment i
1; { I , (4.3)

0, if an item fails environment i

for i = 1, 2, 3, 4. Assume that T1 , T2 , T, T, are positively quadrant independent, i.e.
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4

P( TI <: tI, T 2  t2 , T3 < t3 , T4  1 t4) > jJP(T < t) (4.4)

or equivalently that

4

P( T1 > tl , T 2 > t2 T 3 > t3, T4 > 4) > J7P(7 > ti). (4.5)
i=1

Let R be the probability that an item activates after exposure to all 4 environments.

Then

R = P(T 1 = 1, T2 = 1, T3  1, T4 = 1). (4.6)

Using equations (4.4) and (4.5)

R >_ P(T = I)P(T2 = I)PT 3  I)P(T4  1). (4.7)

Using the notation from the previous section

R > Q, Q2 Q3 QA, (4.8)

where Q, is the probability that an item passes environment i. With the censored data,

we can't estimate Q,, Q2 , Q3 and Q without building a more structured model for

T, T2 , T, and T4. One alternative is get a lower bound for estimates of

Q,, Q2, , Q, Q4. This is worst case scenario.

B. CALCULATIONS WITH EXAMPLE

Let

" R be the MLE for the reliability of the device.

" Q, be the MLE for the probability that an item passes environment i.
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•R be a lower bound of R for reliability of the device.

* Q be a lower bound for the probability that an item passes environment i.

Then according to equation (4.8)

4

R-JjQ1  (4.9)

i=1

Further we will construct estimates Q, of 2, such that

A

Qi (4.10)

and then define

4

= Q,. (4.11)
1=1

Thus

R R. (4.12)
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From Chapter II, the likelihood of observing X, x1, X, = x2, X3 = x3 , X 4 = x4 is

.1

L(x, x2, x3, x4 R1 , R2, R3, R4 ) = f iJ(1 )- ( n-

i=1

(n) P(T-- l)X=p(T =O)n,-x.

x P(T l  xl PT I)

X (n2)PT = 1, T 2 =lx
(X 2

x (I -P(T = 1, T2 =I))2-x2 (4.13)

x (1 P(T1 = I,T3 =1)x3
(X3

X (I - P(T,=I, T3 =I))n3-
X3

x P(TI 1,T4 = 1)X
4)

x (1 -P(T =1,T ))) - X4

where x, is the number of devices out of n, that activate after test i. If we know why the

device failed for the tests i = 2, 3, 4 which include manufacturer test along with exposure

to environment i then our likelihood could be written as
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L x, , X2, X3, x4 R 1, R2, R3, R4) (n P( 1=)xp (T = O)n - x ,

X 1  
"

X 2 , X21, X22'-, X-13)

x P(TI = 1, T2 = 1)x2 P(T 1, T2 =O)x21

x P(Tl=O,T2 = I)X P(TI=o, T 2=O)23

" X3 , X31, X32, X33) 4.4

x P(TI = I, T3 = )X3 P(TI= l, T3 O)X3

x P (T = O, T3 = l)32 P (T= , T3 =O)33

X4, X41, X42, X43)

X P (TI = 1, T4 = 1)"4 e (TI 1 , T4 =o)-X4

x P(T=OT 1)-4T 1 = 0, T4 =0) 43

where x, is the number given test i which failed due to environment i but passed manu-

factuning, x,2 is the number given test i that passed environment i but failed manufac-

turing and x, is the number given test i that failed both manufacturing and environment

ifori = 2, 3, 4. Note thatn, - x, = x,, + xa + x,3fori = 2, 3, 4.

From this likelihood, the MLE's of Q = P (T = 1) are given by

X1 + (x2 +x 21) + (x3 +x31) + (x4 + x41)

n + n 2  n3 + N(4.15)
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X2 + X22  (4.16)
Q2  n2I

Q3---"3 + ' X 3 2
= 3  , 3  (4.1!7)

3 n3

Q -X4 + X42x 4x 2 (4.18)

towever since we do not know the x,'s, we see that

xl +x 2 +x 3 +x 4  (4.19)Q,1 >  n (.9

and

(4.20)

for i= 2, 3, 4. Let

A =X + X 2 + X 3 + X 4  (4.21)
QI- n

and

A

Qi = nj (4.22)

for i = 2, 3, 4. Then Q,'s are lower bounds for the true MLE's Q, and

A A A A A

R = Q1Q2 Q3 Q4  (4.23)

It is clear that R is a lower bound for the MLE R.
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In Worst Case Scenario, we assume that the item, which fails in test i, fails because

of both manufacturing related failure mechanism and other failure mechanism which is

induced by the i th test environment. With this assumption, the reliability of of device

is given as follows

A A A A A

R= Q1 Q2 Q3 Q4  (4.24)

where

A X + X 2 + X3 +X 4

92
A X 2

Q2 = 20
A X3 (4.25)

A X4

Q4= 20

Here is an example, in this example our failure vector is,

(0 1 2 1)

A 20 + 19 + 30 + 19
QI 2 92 =0.9456521

A 19
2 = 19 -0.9500000"=3 (4.26)
Q- 30 - 0.9375000

A 19
Q - 20 = 0.9500000

And finally reliability of the device can be estimated by using equation (4.24)

A

R = (0.9456521 ) (0.9500000) (0.9375000) (0.9500000) = 0.8093069 (4.27)
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C. RESULTS

We compute MLE's with a FORTRAN program MLEB in Appendix G. These

are given Tables 10 and 11.

To get an approximate lower confidence bounds for R using the worst case data,

we bootstrap using the procedure described in the previous chapter. The FORTRAN

program RANVEC in Appendix B is used to generate the 5000 bootstrap samples for

each case. We then estimate R 's for 5000 failure vectors by the means of M LEB for

given case. The next step is to compute the order statistics of h 's from R, to R5 . This

is done by FORTRAN program SORT in Appendix C. Finally, we obtain the 95 %

lower confidence bound from this routine. Reliabilities and 95 % lower confidence

bounds are tabulated in the following pages. Results of reliabilities and 95 % lower

confidence bounds are given in descending order.

These estimates and LCB's for R are decreasing with the total number of the failures

out of 92 items tested. This, at least, is consistent with how we believe pyrotechnic de-

vices behave. It should be noted that these estimates are in fact conservative lower

bounds for the time MLE's under the very weak assumption of PQD. How conservative

these estimates are cannot be determined without more extensive data that allows us to

estimate the degree of dependence between tests.
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Table 10. TEST PROBABILITIES ( B)

CASE k

( 0 0 0 0) 1.0000000 1.0000000 1.0000000 1.0000000

( I 0 0 0) 0.9891340 1.0000000 1.0000000 1.0000000

( 00 1 0) 0.9891340 1.0000000 0.9687500 0.1.00000

(1 0 1 0) 0.9782608 1.0000000 0.9687500 1.0000000

( 00 01) 0.9891304 1.0000000 1.0000000 0.9500000

(0 1 0 0) 0.9891340 0.9500000 1.0000000 1.0000000

(1 0 0 1) 0.9782608 1.0000000 1.0000000 0.9500000

(I1 0 0) 0.9782608 0.9500000 1.0000000 1.0000000

( 0 0 2 0) 0.9782608 1.0000000 0.9375000 1.0000000

(1 0 2 0) 0.9673913 1.0000000 0.9375000 1.0000000

(0 0 1 1 ) 0.9782608 1.0000000 0.9687500 0.9500000

( 0 1 1 0) 0.9782608 0.9500000 0.9687500 1.0000000

(1 0 1 1) 0.9673913 1.0000000 0.9687500 0.9500000

(I 1 0) 0.9673913 0.9500000 0.9687500 1.0000000

(0 1 0 1) 0.9782608 0.9500000 1.0000000 0.9500000

(1 1 0 1) 0.9673913 0.9500000 1.0000000 0.9500000

(0 0 2 1) 0.9673913 1.0000000 0.9375000 0.9500000

(0 1 2 0) 0.9673913 0.9500000 0.9375000 1.0000000

(1 0 2 1) 0.9565217 1.0000000 0.9375000 0.9500000

(I1 2 0) 0.9565217 0.9500000 0.9375000 1.0000000

(0 1 1) 0.9673913 0.9500000 0.9687500 0.9500000

(1I I 1 ) 0.9565217 0.9500000 0.9687500 0.9500000

(0 1 2 1) 0.9565217 0.9500000 0.9375000 0.9500000

(1 1 2 1) 0.9456521 0.9500000 0.9375000 0.9500000
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Table 11. RELAIBILITIES AND 95 % LOWER CONFIDENCE
BOUNDS ( B)

FAILURE A FAILURE 95 % LCB
VECTOR VECTOR

(0000) 1.0000000 (0000) 1.0000000

1 0 00 ) 0.9891304 (I 0 v 0 ) 0.9891304

(0 0 10) 0.9582200 (00 10) 0.8766983

(1 0 10) 0.9476901 (1 0 10) 0.8766983

(000 1 ) 0.9396738 (000 1) 0.8222825

(0 1 00) 0.9396738 (000 1) 0.8222825

(1 00 1) 0.9293478 (0 100) 0.8222825

(1 1 00) 0.9293478 (1 100) 0.8222825

(0020) 0.9171195 (0020) 0.8179346

(1020) 0.9069293 (1020) 0.8084239

(0 0 1 1) 0.9003056 (00 11) 0.7712974

(0 1 1 0) 0.9003056 (0 1 1 0) 0.7712974

(1 0 !) 0.8903022 (1 0 1 1) 0.7712974

( I 1 0) 0.8903022 (0 1 0 1) 0.7712974

(0 0 1) 0.8828803 (0 1 0 1) 0.7548369

( 1 0 1) 0.8730705 (1 1 0 1) 0.7548369

(0 1 20) 0.8615828 (0 1 20) 0.7218070

(002 1 ) 0.8615828 (002 1) 0.7200747

(102 1) 0.8519021 (102 1) 0.7200747

(1 120) 0.8519021 (1 120) 0.7200747

(0 11) 0.8457870 (0 1 1 1) 0.6929346

( i i ) 0.8362838 (1 1 1 1) 0.6927614

(0 1 2 1) 0.8093069 (0 12 1) 0.6508338

(1 1 2 1) 0.8001103 (1 1 2 1) 0.6505433
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V. BONUS SYSTEM APPROACHES

A. BACKGROUND

Quality is described as especially high degree of goodness or worth " [Ref. 9

p. 6851. In industry, a quality product is one that fulfills customer expectations.

There are two general aspects of quality:

a Quality of Design

s Quality of Conformance.

All goods and services are produced in various grades or levels of quality. These

variations in grades or levels of quality are intentional; therefore the appropriate tech-

nical term is quality of design. The quality of conformance is how well the product

conforms to the specifications and tolerances required by the design. Quality of con-

formance is influenced by a number of the following factors:

" the choice of manufacturing process

" the training and supervision of the workforce

" type of quality assurance system ( process controls, tests, inspections, etc. ) used

" the extent to which these quality-assurance procedures are followed

" the motivation of workforce to achieve quality.

Quality Control is the engineering and management activity by which we measure

the quality characteristics of a product, comparing them with specifications or require-

ments and taking appropriate remedial action whenever there is a difference between the

actual performance and the standard [Ref. 10 : pp. 1-3].

As contracts are now written, contractors need only to satisfy the requirments of the

sampling inspection plan for lot acceptance. Contractors have no incentive to improve

the quality of the items they provide, although they are in a position to do so. As
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mentioned before, the quality of conformance is influenced by the motivation. Therefore

we can motivate manufacturers by giving a bonus for improved quality. To improve

quality, The Naval Weapons Support Center has decided to implement a bonus system

for pyrotechnic devices.

B. BONUS PLANS

In this chapter, we design a bonus system to improve the quality of pyrotechnic

devices. A good bonus system encourages reliability growth, because firms try to reach

a high quality to get a bonus. An effective bonus system must detect small differences

among the offered lots. In the previous chapters, we estimated the reliability of a

pyrotechnic device in several ways. We assumed independence in the first model, and

we assumed dependence between tests in the last two models. The estimated reliabilities

in the first two models are close to each other, but they exhibit different structures in

order. One can easily see that the failure vector of the worst case ( 1 1 2 1 ) has bigger

reliability value than ten of the possible cases, from Table 5 and Table 15. In addition,

the order of 95 % LCB's of cases does not match to the order of MLE's in independent

models. But in the worst case scenario, which assumes dependence between tests, we

get the same order for both 95 % LCB's and MLE's. Thus, we will use the worst case

scenario model in further calculations for the bonus system. With the assumptions

above, we can apply three sampling plans for giving bonuses to the manufacturers.

These are:

" Single Sampling Bonus System

" Double Sampling Bonus System

" Multi-Sampling Bonus System.

Manufacturers have to meet pyrotechnic device acceptance criteria first, before

having a chance to get a bonus.
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1. Single Sampling Bonus System

In this bonus system, we will decide two things at the end of inspection. First

we will decide whether the offered lot is acceptable or not, and then for lots which are

accepted we will decide whether to give a bonus to the manufacturer.

The Single sampling bonus system is designated by three numbers. These are.

n,, LCBFB, LCB

where

Sn1, is the sample size for inspection ( here n, = 92 ).

* LCBFB is the cut off value applied to the lower confidence bound for

awarding a bonus.

m I.CB means estimated lower confidence bound after inspection. (If LCB is

greater than or equal to LCBFB, then a bonus is awarded.)

The following algorithm shows us how single sampling bonus system works for

pyrotechnic devices.

STEP # I : DETERMINE CUT OFF VALUE FOR AWARDING THE BONUS.

STEP # 2 : TAKE A SAMPLE SIZE OF 92 FROM OFFERED LOT.

STEP # 3 : APPLY MANUFACTURER AND THREE ENVIRONMENT TESTS.

STEP # 4 : COMPARE RESULTS OF TESTS WITH ACCEPTANCE CRITERIA.

STEP # 5 : ESTIMATE ITS LOWER CONFIDENCE BOUND ( LCB ),

IF THEY MET ACCEPTANCE CRITERIA.

STEP # 6 : COMPARE LCB OF LOT WITH LCBFB

STEP # 7 IF THE LCB IS GREATER THAN OR EQUAL TO LCBFB,

GIVE BONUS TO THE FIRM.
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According to the algorithm described above, the following are possible events

for the firms.

m Firm may not satisfy our acceptance criteria. This means that firm gets a

failure vector worse than ( 1 1 2 1 ).

m Firm satisfies acceptance criteria, but its LCB may be less than LCBFB. This

means that firm does not get bonus, but the lot is accepted.

m Firm satisfies acceptance criteria, and its LCB may be greater than or equal

to LCBFB. This means that firm gets the bonus.

2. Double Sampling Bonus System

A double sampling plan has an advantage over a single sampling plan. Because

a double sampling plan involves a larger sample size, it reduces the chance that a man-

ufacturer who deserves a bonus will not get one. Double Sampling Bonus System per-

mits the taking of two samples on which to make a decision [Ref. 11 : pp. 184-185].

In this system, we have two inspection stages. If the firm does not get a bonus

after the first inspection, then the firm is given a second chance with a second inspection.

A double sampling bonus system is designated by five numbers.

n,, n2 , LCBFB, LCBI, LCB2

where

" n, is the sample size for first inspection, ( here nj = 92)

" n2 is the sample size for second inspection, ( here n2 = 92)

" LCBFB is the cut off value applied to lower confidence bounds for awarding

bonuses,

* LCBI is the estimated lower confidcnce bound after first inspection,

* LCB2 is the updated estimate of lower confidence bound after second in-

spection.
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In the double sampling bonus system, if the firm does not get a bonus after the

first inspection but does meet the acceptance criteria for the first sample, then a second

sample is taken. We already have LCB's of possible cases aftci the first inspection in

Table 11. After the second inspection, we calculate the LCB using an aggregated failure

vector which includes failures from both samples. When we compute LCB's using ag-

gregated failure vector after the second inspection, we have a total sample size of 184;

there are 135 different failure vectors for which the lot meets the acceptance criteria for

both samples. After tabulating these possible 135 cases and the estimates of R, we used

the bootstrap procedure to find LCB's for each case. We created 5000 random failure

vectors for each of them by using case success probabilities in tests. After this, we esti-

mated M LE's of 5000 failure vectors for each possible case. Finally, we estimated 95

% LCB of each case. These calculations were done by using programs RANVEC,

MLEB, SORT in appendix B, G and C respectively. The results are tabulated at Ap-

pendix I. The following algorithm shows us how double sampling bonus system works

for pyrotechnic device.

STEP # 1 DETERMINE LCBFB.

STEP # 2 TAKE A SAMPLE SIZE OF 92 FROM OFFERED LOT.

STEP # 3 APPLY MANUFACTURER AND THREE ENVIRONMENT TESTS.

STEP # 4 COMPARE RESULTS OF TESTS WITH ACCEPTANCE CRITERIA.

STEP # 5 ESTIMATE ITS LOWER CONFIDENCE BOUND ( LCB1 ),

IF THEY MET ACCEPTANCE CRITERIA.

STEP # 6 COMPARE LCB1 OF LOT WITH LCBFB

STEP # 7 IF THE LCB1 IS GREATER THAN OR EQUAL TO LCBFB,

GIVE BONUS TO THE FIRM.

STEP # 8 IF THE LCB1 IS LESS THAN LCBFB,

55



GIVE A SECOND CHANCE TO THE FIRM FOR BONUS.

STEP # 9 TAKE A NEW SAMPLE SIZE OF 92 FROM OFFERED LOT.

STEP # 10 APPLY MANUFACTURER AND THREE ENVIRONMENT TESTS.

STEP # 11 AFTER GETTING THE NEW FAILURE VECTOR,

ADD THIS ONE TO THE FIRST FAILURE VECTOR.

STEP # 12 ESTIMATE ITS LOWER CONFIDENCE BOUND ( LCB2 ),

WITH AGGREGATED FAILURE VECTOR.

STEP # 13 COMPARE LCB2 OF LOT WITH LCBFB

STEP # 14 IF THE LCB2 IS GREATER THAN OR EQUAL TO LCBFB,

GIVE BONUS TO THE FIRM.

According to the algorithm described above, the following are possible events

for the firms.

m The firm may not satisfy our acceptance criteria after first inspection. This

means that firm gets a failure vector worse than ( 1 1 2 1 ). The lot is not accepted and

second sample is not taken.

a The firm satisfies acceptance criteria, and its LCBI may be greater than or

equal to LCBFB. This means that it gets bonus after first inspection, and a second

sample is not needed.

n The firm satisfies acceptance criteria, but its LCBI may be less than LCBFB.

This means that it does not get the bonus after first inspection, but still has a chance to

get a bonus if it submits a second sample.

Of those which submit a second sample

w LCB2 may be less than LCBFB. It means that firm does not get the bonus,

but the lot is accepted.
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T Ehe aggregated failure vector meets acceptance criteria. But LCB2 may be

grater than or equal to LCBFB. It means that firm gets bonus.

3. Multi-Sampling Bonus System

In this system approach, we may take a sample of size 9? from offered lot three

times, four times or more. But if we use the three sampling bonus system, after the third

inspection, we ma' get ( 4 X 4 X 7 x 4 = 448 ) 448 different failure vectors. Multi-

Sampling Bonus System is going to be more computationally intensive with respect to

double sampling bonus system. This can be done later using with the same reasoning

in double sampling bonus system.

C. EXAMPLES

1. Single Sampling Bonus System

Let us assume that we decided that lower confidence bound for bonus will be

0.8500. We are going to use this LCBFB in these examples.

* Case # 1

At ahc end of inspection, firm has following failure vector

(2 0 0 0).

The firm did not meet the acceptance criteria. We immediately reject the lot and no

bonus is given.

m Case # 2

At the end of inspection, firm has following failure vector

( 1 0 0 1 ).

The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be
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LCB = 0.8222825.

Because LCB < LCBFB , we do not give a bonus to the firm.

m Case # 3

At the end of inspection, firm has following failure vector

(0 0 1 0 ).

The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be

LCB = 0.8766983

Because LCB > LCBFB , we give a bonus to the firm.

2. Double Sampling Bonus System

u Case # 1

At the end of first inspection, firm has following failure vector.

( 1 0 0 1).

The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be

LCBI = 0.8222825

Because LCBI < LCBFB , we give a second chance to the firm. Here is the result of

second inspection

( 0 3 2 1).

The aggregated failure vector will be
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(1 3 2 2).

It is clear that LCB2 < LCBI for this data, thus we do not give a bonus to the firm.

a Case # 2

At the end of first inspection, firm has following failure vector

1 0 0 1 ).

The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be

LCB1 = 0.8222825

Here, LCB < LCBFB thus we will give a second chance to the firm. Here is the result

of second inspection

( 0 0 1 1 ).

The aggregated failure vector will be

( 1 0 1 2),

and we estimate its 95 % lower confidence bound to be

LCBI = 0.8369564

Because LCB < LCBFB , we do not give a bonus to the firm.

m Case # 3

At the end of first inspection, firm has following failure vector

( 1 0 0 I ).
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The firm meets the acceptance criteria. We estimate its 95 % lower confidence bound

to be

LCBI = 0.8222825

Because LCBI < LCBFB, we will give a second chance to the firm. Itlere is the result

of second inspection

0 0 0 1).

The aggregated failure vector will be

( 1 0 0 2 ),

and we estimate its 95 % lower confidence bound to be

LCBI = 0.8706521.

Because LCB2 > LCRFB, we will give a bonus to the firm.
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VI. SIMULATION RESULTS OF BONUS SYSTEMS

A. BACK GROUND

We simulated the bonus system to get an idea of how well the bonus system pro-

posed in the previous chapter works. This provides the user with a means of setting the

cut off criteria for awarding a bonus. To generate random failure vectors, we need to

know the probabilities of being successful in each test for the firm. First, we assume that

the firm has an equal probability of being successful in each test, with the following

values ofP, = P- P3 = P4

e 0.9375

* 0.9500

e 0.9750

* 0.9900

9 0.9950.

In a second set of simulations, we assume that the manufacturer test has a bigger

probability of being successful than the other environment tests. The following proba-

bilities of being successful in manufacturer test were used.

* 0.9990

* 0.9950

a 0.9750

* 0.9500.
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In these cases, we used equal probabilities of being successful in other environment tests

with values between 0.9375 and manufacturer test probability for that given case.

Finally, we assume that the manufacturer test should have smaller probability of being

successful. When we study these cases with this assumption, we used probabilities of

being successful in other environment tests between manufacturer test probability and

0.9990 for that given case. We assume that minimum value of the manufacturer test

probability will be 0.9500 because of worst case in last two assumptions.

We generated 2000 random failure vectors for each possible combination of proba-

bilities by using program RANVEC in Appendix B. They were used for 1000 repli-

cations of each bonus system, because the Double Sampling Bonus System ( DSBS )

potentially uses two failure vectors per replication.

After getting the failure vectors, the next step is to decide lower confidence bound

for giving bonus ( LCBFB ). We chose 0.800, 0.825, 0.850, 0.875, 0.900, 0.950, 0.999

as LCBFB during our simulations. We simulated bonus systems by using program BO-

NUS in Appendix G. Program BONUS counts how many times firm gets bonus during

1000 replications. And then it calculates the bonus percentage dividing counted number

by 1000. For each scenario this bonus percent is an estimate of the probability of getting

a bonus.

B. INITIAL COMPARISON OF SYSTEMS

In this part, with equal probabilities of being successful in tests, we tried to see the

difference between the Single and the Double Sampling Bonus Systems. For this reason,

we simulated Single Sampling Bonus System. Results were tabulated and plotted in next

pages.
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Table 12. SINGLE SAMPLING BONUS SYSTEM (EQUAL PROBABILITIES)

PROB.'S CHOSEN LOWER CONFIDENCE BOUNDS FOR BONUS

0.800 0.825 0.850 0.875 0.900 0.950 0.999

0.9200 0.025 0.007 0.007 0.007 0.002 0.002 0.002

0.9375 0.060 0.023 0.023 0.023 0.010 0.010 0.007

0.9450 0.092 0.044 0.044 0.044 0.018 0.018 0.010

0.9500 0.117 0.053 0.053 0.053 0.022 0.022 0.011

0.9600 0.222 0.112 0.112 0.112 0.045 0.045 0.028

0.9700 0.380 0.198 0.198 0.198 0.107 0.107 0.067

0.9750 U.482 0.281 0.281 0.281 0.163 0.163 0.067

0.9800 0.609 0.381 0.381 0.381 0.237 0.237 0.106

0.9850 0.740 0.511 0.511 0.511 0.362 0.362 0.166

0.9900 0.868 0.646 0.646 0.646 0.502 0.502 0.274

0.9950 0.955 0.805 0.805 0.805 0.502 0.502 0.407

It is obvious that there is no difference between some lower confidence bounds for bonus

from the table above. The firm gets the same bonus percentage when we use 0.825,

0.850, 0.875 as lower confidence bound for bonus. The same thing occurs when we use

0.900 and 0.950 as LCBFB. For this reason, we are going to see four curves in Figure

1. Figure 2 shows Double Sampling Bonus System with different LCBFB's.
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SINGLE SAMPLING BONUS SYSTEM

DIFFERENT LCB'S FOR BONUS WITH EQUAL TEST PROWAILM~ES
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Figure I. Single Sampling Bonus System With Different LCBFB's

DOUBLE SAMPLING BONUS SYSTEM

DIFFERENT LCBS FOR BONUS WITH EQUAL TEST PROBABILITES
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As you sec in figure 2, we have six different curves for Double Sampling Bonus System.

Because in this system, we can see from the table that LCBFB's 0.900 and 0.950 have

approximately the same bonus percentage. For this reason we did not plot for 0.950.

Table 13. DOUBLE SAMPLING BONUS SYSTEM (EQUAL PROBABILITIES)

PROB.'S CHOSEN LOWER CONFIDENCE BOUNDS FOR BONUS

0.800 0.825 0.850 0.875 0.900 0.950 0.999

0.9200 0.026 0.008 0.007 0.007 0.002 0.002 0.002

0.9375 0.064 0.030 0.025 0.023 0.010 0.010 0.007

0.9450 0.108 0.059 0.050 0.045 0.020 0.018 0.010

0.9500 0.142 0.079 0.063 0.057 0.027 0.022 0.011

0.9600 0.277 0.172 0.144 0.122 0.052 0.045 0.028

0.9700 0.498 0.351 0.293 0.236 0.138 0.107 0.067

0.9750 0.624 0.487 0.423 0.353 0.212 0.163 0.106

0.9800 0.752 0.632 0.565 0.487 0.319 0.237 0.166

0.9850 0.861 0.799 0.738 0.643 0.486 0.362 0.274

0.9900 0.948 0.920 0.887 0.799 0.671 0.502 0.407

0.9950 0.987 0.982 0.970 0.941 0.872 0.695 0.626

Figure 2 shows DSBS to be more sensitive in the sense that a higher percentage of

the firms were awarded a bonus. For this reason, we decided to implement DSBS in all

simulations.
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C. SIMULATION RESULTS WITH DIFFERENT LCB'S FOR BONUS

In this section, results for each chosen lower confidence bound for bonus will be

presented as follows. We used values in 'able 13 to draw plots with equal probabilities

in each test. Polynomial approximation was used in curve fitting.

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILITIES; LCBFB - 0.500

0

t

'

w

AII I I

PROsma8UJES

Figure 3. Double Sampling Bonus System With LCBFB 0.800

Table 14. DSBS (EQUAL PROBABILITIES) LCBFB = 0.800

LOWER CONFIDENCE BOUND FOR BONUS IS 0.800

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.026 0.9375 0.064 0.9450 0.108

0.9500 0.142 0.9600 0.277 0.9700 0.498

0.9750 0.624 0.9800 0.752 0.9850 0.861

0.9900 0.948 0.9950 0.987
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In Figure 3, when the probabilities of being successful in each test increase, then the

bonus percent increases. For example, when the test probabilities is equal to 0.9200,

then the bonus percent is 0.026. If the firm increases its probabilities of being succesful

in each test to 0.9900, then the bonus percent becomes 0.948. The result of the double

sampling bonus system with different lower confidence bounds are tabulated and plotted

in Appendix J.

To see whether the probability of passing the manufacturer test effects the bonus

percentage differently than the other probabilities, we assumed that the environment

tests would have equal probabilities. But the firm will have a different probability of

being successful in the manufacturer test. In the following table, the first row represents

probability of being successful in the environment tests and the first column represents

probability of being successful in the manufacturer test. The intersection of rows and

columns gives us the bonus percentage of a firm with given probabilities of being suc-

cessful in the tests. These procedures were done for each LCBFB value separately. The

results are tabulated and plotted in Appendix K. Bonus percentages for LCBFB =

0.8000 are plotted on the following page. It is clear that the bonus percentage of the

firm will be high if the firm has big probabilities of being succesful in both manufacturer

test and other joint environment tests.
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D. BONUS PERCENTAGE (BPRCT) FORMULATION

In this section we try to approximate probability of getting a bonus as a function

of lower confidence bound for bonus ( LCBFB ), probability of passing manufacturer

test ( P, ) , and probability of passing environment tests ( P2 ). To do this, we use re-

gression analysis with GRA, FSTAT using the bonus percentages which are the simulated

values of the probability of getting a bonus. If a reasonable relationship between the

bonus percentage and LCBFB and the probabilities P, and P2 can be found; it can be

used to set LCBFB without resorting to simulation.

We want to formulate bonus percentages as a function of the following:

" Lower confidence bound for bonus ( LCBFB)

" Probability of passing manufacturer test P,

" Probability of passing environment tests P2.

After polynomial approximation, we can see that plotted graphs (Figures 3-10) look

like logistic growth curves [Ref. 12: p. 383]. Then we can formulate bonus probabilities

(BP) using the logistic growth function.

BP= A (7.4)
+ e

where

A=flo + flP, + fl2P f1 3 P2 + fl 4P2 + 5 P1 P2 + fl 6 LCBFB (7.5)

We can make a transformation described as below.

I + e' = 1 (7.6)

+ I -BP

e = BP (7.7)
BP
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A = log [1 -BP (7.8)

Now we have a linear equation as a function of LCBFB, P, and P2. We may use

simulation results and approximate parameters doing a linear regression.

" Let Y be the ( n x 1) column vector of observations on dependent variable.

" Let X be the ( n x p' ) matrix consisting of a column of ones, which is labeled 1,

followed by p column vectors of observations on independent variables.

" Let fl be the (p' x 1 ) vector of parameters to be estimated.

" Let t be the( n x 1 ) vector of random errors. Then

Y = Xfl+E (7.9)

We can obtain observations on dependent variable as below,

Y = log I -BPRCT (7.10)

where BPRCT is the bonus percentage obtained from the simulation. As an example

we have the following information from simulations.

" LCBFB = 0.875

" P, = 0.9500

• P'? = 0.9025

" P2 = 0.9375

• P3 = 0.8789

" P, P2 = 0.8910

" BPRCT = 0.029

- Y = 3.5110.

We can write following equation.
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3.5110 = flo + ? 1 0.95 + fl2 0.9025 + #3 0.9375 + l4 0.8789 + f'5 0.8910 + l6 0.875 + r.

We deliberately chose 30 random results from simulations. We formulate them as

above. We can estimate unknown parameters on these equations doing linear re-

gression. 30 equations can be written with matrix notation as follows:

Y(1)

Y(2)

S 1'(3) (7.1)

Y(30)

And X matrix is designed as follows:

I P1 (I) PI(1) P 2(0) p2(I) PI P2(0)

i P1(2) P,(2) P2(2) P2 (2) PI P2(2)

X= 1 P1 (3) PI(3) P2(3) P (3) P P2(3) (7.12)

1 p1 (30) PI(30) P2(30) P (30) P P2(30)

And parameter vector will be as below.

fl2
fl 3 (7.13)

#4
fl5
#6
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We estimate parameters with linear regression using GRAFSTAT packages. And

then we formulate the bonus percentage using the estimates of parameters. The esti-

mated bonus probabilities are given by

P. (7.14')
I + e'

The following estimates of the parameters were obtained from the regression.

Table 16. COEFFICIENT VECTORS OF REGRESSION ANALYSIS

PARAMETERS ESTIMATED VALUE

flo -1042.3

flA 695.11

13, -86.661

134 1560

P5, -569.81

f1k -570.62

f13' 12.266

The standard error was 0.45471 after the linear regression. We can use these esti-

mates of parameters in equation (7.5). And we can estimate the bonus probability of the

firm when the probability of passing tests and lower confidence for bonus are known.

Some examples are calculated with equation (7.5). Results of the calculations and

comparison with simulation are summarized in following table.
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Table 17. BONUS PERCENTAGES WITH REGRESSION ANALYSIS
SIMU-

LCBFB P, P2  LATION EST.VALUE

0.800 0.9750 0.9750 0.624 0.564

0.800 0.9990 0.9375 0.106 0.062

0.825 0.9750 0.9950 0.882 0.911

0.825 0.8500 0.9750 0.064 0.077

0.850 0.9500 0 9900 0.612 0.615

0.850 0.9900 0.9750 0.476 0.529

0.875 0.9000 0.9750 0.114 0.080

0.875 0.9700 0.9700 1236 0.211

0.900 0.9950 0.9990 0.985 0.945

0.900 0.8750 0.9900 0.158 0.096

0.950 0.9450 0.9450 0.018 0.010

0.950 0.9750 0.9990 0.839 0.790

0.999 0.9850 0.9850 0.274 0.335

0.999 0.9900 0.9250 0.004 0.002
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VII. CONCLUSIONS AND RECOMMENDATIONS

We estimated the reliability of pyrotechnic device from the sampling plan using the

following models:

a Mayimum likelihood assuming independence of pyrotechnic device activation in

different environments;

, Log linear model incorparating some dependence between pyrotechnic device ac-

tivation in different environments;

a Worst case scenario which gives a lower bound for the estimated reliability for the

general model where no assumptions are made about the form of dependence between

pyrotechniL device activation in different environments.

Using these models and based on sampling plan data, estimates of overall reliability

along with 95 % lower confidence bound are obtained. We computed the lower confi-

dence bound for each possible case by bootstrapping.

Results from the first model are not consistent with the way pyrotechnic devices

operate. In particular, the estimated reliabilities are not ordered as we expected them

to be. Intiutively, we expect samples with fewer failures to give smaller h values and

corresponding LCB's than samples with more failures. This is not the case for the first

model. For example, the failure vector that has the maximum number of failur-s for

each test ( a total of 5 failures ) is in the middle of the order with respect to hand the

95 0% lower confidence bound. The failure vector ( 0 1 0 1 ) with a total of 2 failures

has a much lower k and LCB. The discrepency between the results of this model and

what we expected to see are probably due to the fact that there is a dependence between

the events which a device activates under different environments.
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The results of the log linear model design with two-way dependence assumptions are

similar to the first model. Two-way interaction terms were used in this model. More-

over, reliabilities of several cases were not calculated because of computational limita-

tions. Due to the extensive censoring in the sample data, it does not appear to be

possible to estimate the reliability based on models which incorparate dependence.

Thus, wc turn to finding lower bounds for the estimated reliability based on models with

dependence.

Finally, the worst case scenario model gives the most reasonable results for this

problem. Both the lower bounds for estimates of reliabilities and 95 % lower confidence

bounds for these lower bounds are ordered according to the total number of failures.

Thus, the results from the worst case scenario were used to implement the bonus system

for pyrotechnic devices.

After getting the estimate of reliability and 95 % lower confidence bound for each

case, we tried to design a bonus system to improve the quality of pyrotechnic devices.

We used 95 %0 lower confidence bounds instead of the estimated overall reliabilities to

decide whether to give bonuses. Two sampling plans for giving the bonus to the man-

ufacturers were considered:

" Single Sampling Bonus System

" Double Sampling Bonus System.

We simulated two sampling bonus systems to see the difference between them.

We concluded that the double sampling system is more sensitive than single sampling

bonus system.

To formulate an approximate bonus percentage as a function of lower confidence

bound for bonus ( LCBFB ), the probability of passing manufacturer test P,, and the

probability of passing the environment tests P%, we used regression analysis with

G RAFSTAT.
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Because the sampling plan results in so much censoring, the only reasonable esti-

mates of overall reliability that we obtained were actually lower bounds. This makes the

bonus system conservative in the sense that a bonus might not be awarded what it is

deserved. Therefore, if a bonus system is to be implemented, a more comprehensive

sampling plan needs to be devised which allows estimation of R. A simple solution to

this problem can be to apply all environmental tests to the same sample which would

give a measure of dependence between environmental tests.
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APPENDIX A. PROGRAM MLEA

PROGRAM MLEA

* THIS IS A FORTRAN PROGRAM TO CALCULATE THE RELIABILITY OF AN

* ITEM AFTER EXPOSURE TO SEVERAL ENVIRONMENTS WITH INDEPENDENCE

* ASSUMPTION WHICH IS DESCRIBED IN CHAPTER I . THE PROGRAM READS

* 5000 SUCCESS VECTORS, WHICH ARE RANDOMLY GENERATED BY PROGRAM

* RANVEC, FROM AN INPUT FILE CALLED SUCVECT ONE BY ONE. AFTER

* CALCULATION IT THEN PROGRAM WRITES ESTIMATED RELIABILITIES TO

* AN OUTPUT FILE CALLED RESULT.

* VARIABLES

* SOM NUMBER OF SUCCESSFUL ITEMS IN MANUFACTURER TEST.

* SOTH NUMBER OF SUCCESFUL ITEMS IN TEMPERATURE AND HUMIDITY

* TEST.

* SOV NUMBER OF SUCCESSFUL ITEMS IN VIBRATION TEST.

* SOA NUMBER OF SUCCESSFUL ITEMS IN ALTITUDE TEST.

* RlH ESTIMATED PROBABILITY OF PASSING FROM MANUFACTURER TEST.

* R2H ESTIMATED PROBABILITY OF PASSING FROM TEMPERATURE AND

* HUMIDITY TEST.

* R3H ESTIMATED PROBABILITY OF PASSING FROM VIBRATION TEST

* R4H ESTIMATED PROBABILITY OF PASSING FROM ALTITUDE TEST

* RHMLE ESTIMATED RELIABILITY OF ITEM AFTER EXPOSURE TO

* SEVERAL ENVIRONMENT TESTS.

* N SAMPLE SIZES FOR EACH TEST

* X NUMBER OF SUCCESSFUL ITEMS IN EACH TEST.

* FLAG INDICATOR VARIABLE FOR DETERMINING EASY AND HARD CASE.

* RIMAX R1H VALUE WHICH MAXIMIZES LIKELIHOOD.
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* R2MAX R2H VALUE WHICH MAXIMIZES LIKELIHOOD.

* R3MAX R3H VALUE WHICH MAXIMIZES LIKELIHOOD.

* R4MAX R4H VALUE WHICH MAXIMIZES LIKELIHOOD.

* LMAX HIGHEST MAXIMUM LIKELIHOOD VALUE.

* L LIKELIHOOD VALUES AT THE END OF EACH HARD CASE.

* V TOTAL SAMPLE SIZES IN EACH HARD CASE.

* Q1H REORGANIZED PROBABILITY OF MANUFACTURER TEST.

* Q2H REORGANIZED PROBABILITY OF TEMP. AND HUMIDITY TEST.

* Q3H REORGANIZED PROBABILITY OF VIBRATION TEST.

* Q4H REORGANIZED PROBABILITY OF ALTITUDE TEST.

* TYPE DECLARATION

REAL SOM(5000),SOTH(5000),SOV(5000),SOA(5000),RIH,R2H,R3H,R4H,

+RHMLE(5000),N(4),X(4),RIMAX,R2MAX,R3MAX,R4MAX,LMAX,V(7),QIH,Q2H,

+Q3H,Q4H,NTOT,L(7)

INTEGER I,J

LOGICAL FLAG(4)

* READING SUCCESS VECTORS FROM SUSVECT FILE

DO 60 I=1,5000

READ(7,*) SOM(I),SOTH (I),SOV(I),SOA(I)

* FILES FOR READING AND WRITING

CALL EXCMS ('FILEDEF 7 DISK SUCVECT DATA Al')

CALL EXCMS ('FILEDEF 16 DISK RESULT DATA Al')

* **** * * A. A A A *A . . ...... . 1. 1A. - -, 1 **A.;.A AAt.A*--**.-

* INITIALIZATION OF SAMPLE SIZES

N(1) = 20.0

N(2)= 20.0

N(3) = 32.0

N(4)= 20.0

INITIALIZATION OF FLAG VARIABLES

DO 10 J=2,4

FLAG(J)= .FALSE.
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10 CONTINUE

* NUMBER OF SUCCESSES IN EACH TEST

X(1)= SOM(I)

X(2)= SOTH(I)

X(3)= SOV(I)

X(4)= SOA(I)

* CHECK OPERATION FOR EASY CASE

IF ((X(1)/20.00).GE.(X(2)/20.00)) THEN

FLAG(2)= .TRUE.

END IF

IF ((X(1)/20.00) .GE.(X(3)/32.00)) THEN

FLAG(3)= .TRUE.

END IF

IF ((X(1)/20.O0).GE.(X(4)/20.O0)) THEN

FLAG(4)= .TRUE.

END IF

IF ( FLAG(2).AND.FLAG(3).AND.FLAG(4) )THEN

* CALCULATIONS IN EASY CASE

RlH= X(1)/20.0

R2H= X(2)/20.0

R3H= X(3)/32.0

R4H= X(4)/20.0

Q1H= R1H

Q2H= R2H/Q1H

Q3H= R3H/QlH

Q4H= R4H/QlH

RHMLE(I)= Q1H*Q2H*Q3H*Q4H

GO TO 50

END IF

* CALCULATIONS IN HARD CASES

* INITIALIZATION
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DO 30 J=1,7

V(J)= 0.0

L(J)= 0.0

30 CONTINUE

LMAX= 0.0

NTOT= 0.0

* CASE 1 RlH.LT.1.0 AND RlH R2H R311 R4H

DO 40 J=1,4

V(1)= V(1)+X(J)

NTOT= NTOT+N(J)

40 CONTINUE

R1H= V(1)/NTOT

IF (L(1).GT.LMAX) THEN

LMAX= L(1)

R1MAX= R1H

R2lIAX R1H

R3MAX= R1H

R4MAX= R1H

END IF

. .A...... AA..A.A~A;....;

* CASE 2 RlH.LT.1.0, RIH = R2H =R3H R4H IS BETWEEN 0.0 AND R1H

IF ( X(4)/20.0.NE.1.O THEN

V(2)= X(1)+X(2)+X(3)

NTOT= N(1)+N(2)+N(3)

RlH= V(2)/NTOT

IF((X(4)/20.00).LE.R1H) THEN

L(2)= ((RlH)**V(2))*((NTOT-V(2))/NTOT)*f,*(NTOT-V(2))*((X(4)

+/20.0)**,X(4))*(((20.0-X(4))/20.0)**(20.0-X(4)))

IF (L(2).GT.LMAX) THEN

LMAX= L(2)

RlMAX= RiH

R2MAX= R1H
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R3MAX= RIH

R4MAX= X(4)/20.0

END IF

END IF

END IF

* CASE 3 RlH.LT.1.0, RIH = R2H R4H ,R3H IS BETWEEN 0.0 AND RlH

IF ( X(3)/32.0.NE.1.0 ) THEN

V(3)= X(l)+X(2)+X(4)

NTOT= N(l)+N(2)+N(4)

RlH= V(3)/NTOT

IF ((X(3)/32.00).LE.RlH) THEN

L(3)= ((RlH)**V(3))*((NTOT-V(3))/NTOT)**(NTOT-V(3))*( (X(3)

+/32.O)**-X(3))*(((32.0-X(3))/32.0)**C32.0-X(3)))

IF (L(3).GT.LMAX) THEN

LMAX= L(3)

RlMAX= RlH

R2MAX= RlH

R3MAX= X(3)/32.0

R4MAX= R1H

END IF

END IF

END IF

.........A . .. . . ........A AA A ~

* CASE 4 R1H.LT.1.0, R1H = R3H = R4H ,R2H IS BETWEEN 0.0 AND RlH

IF ( X(2)/20.0.NE.l.O ) THEN

V(4)= X(l)+X(3)+X(4)

NTOT= N(l)+N(3)+N(4)

R1H= V(4)/NTQT

IF ((X(2)/20.0O).LE.R1H) THEN

+/20.0)**X(2))*(((20.0-X(2))/20.0)* *(20.0-X(2)))

IF (L(4).GT.LMAX) THEN

LMAX= L(4)
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R1MAX= R1H

R2MAX- X(2)/20.0

R3MAX= R1H

R4MAX= R1H

END IF

END IF

END IF

* CASE 5 RIH.LT.1.O, R1H = R2H R3H , R4H ARE BETWEEN 0.0 AND R1H

IF ((X(3)/32.0.NE. 1.0) .AND. (X(4)/20.0.NE. 1.0)) THEN

V(5)= X(1)+X(2)

NTOT= N(1)+N(2)

R1H= V(5)/NTOT

IF((X(3)/32.00) .LE.R1H.AND.(X(4)/20.00) .LE.R1H) THEN

L(5)= ((R1H)**V(5) )*( (NTOT-V(5) )/NTOT)**(NTOT-V(5) )*( (X(3)

+/32.0)**X(3))*((32.0-X(3))/32.0)**(32.0-X(3))*((X(4)/20.0)**

+x(4) )*((20.0-X(4))/20 .0)**(20 .0-'X(4))

IF (L(5).GT.LMAX) THEN

LMAX= L(5)

RlMAX= R1H

R2MAX= R1H

R3MAX= X(3)/32.0

R4MAX= X(4)/20.0

END IF

END IF

END IF

* ***. . .. . .. . .. . . . .. . . . . . .. . .

* CASE 6 R1H.LT.1.0, RiH =R3H R2H , R4H ARE BETWEEN 0.0 AND R1H

IF ((X(2)/20.0.NE. 1.0) .AND. (X(4)/20.0.NE.1.0)) THEN

V(6)= X(1)+X(3)

NTOT= N(1)+N(3)

RIH= V(6)/NTOT

IF((X(2)/20.00) .LE.RlH.AND.(X(4)/20.00).LE.R1H) THEN

L(6)= ((R1H)**V(6))*((NTOT-V(6))/NTOT)**(NTOT-V(6))*((X(2)

82



+/2Q.O)**X(2))*((20.0-X(2))I2O.0)**(20.O-X(2))*((X(4)/2oo0)-*

+x(4))*((20 .O-X(4))/20.O)**(20.0-X(4))

IF (L(6).GT.LMAX) THEN

LIAX= L(6)

RlMAX= RlH

R2MAX= X(2)/20.0

R3MAX= RlH

R4MAX= X(4)/20.0

END IF

END IF

END IF

* CASE 7 RlH.LT.1.0, R1H = R4H R2H ,R3H ARE BETWEEN 0.0 AND R1H

IF ((X(2)/20.0.NE.1.0) .AND.(X(3)/32.0.NE. 1.0)) THEN

V(7)= X(1)+X(4)

NTOT= N(1)+N(4)

R1h= V(7)/NTOT

IF((X(2)/20.00) .LE.RlH.AND.(X(3)/32.O0) .LE.RlH) THEN

L(7)= ((R1H)**V(7))*((NTOT-V(7))/NTOT)*,*(NTOT-V(7) )*((X(3)

+/32.O)**X(3))*((32.O-X(3))/32O0)**(32.0-X(3))*((X(2)/20.0)**X(2))

+*( (20 .0-X(2))/20 .0)**(20.0-X(2))

IF (L(7).GT.LMAX) THEN

LMAX= L(7)

RlMAX= RlH

R2MAX= X(2)/20.0

R3MAX= X(3)/32.0

R4MAX= R1H

END IF

END IF

END IF
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* CALCULATION OF RHMLE VALUE WITH RESPECT TO CASE WHICH HAS LARGEST

* MAXIMUM LIKELIHOOD IN HARD CASE

RlH= RIMAX

R2H= R2MAX

R3H= R3MAX

R4H= R4MAX

Q1H= RIH

Q2H= R2H/QIH

Q3H= R3H/QIH

Q4H= R4H/QIH

RHMLE(I)= QIH*Q2H*Q3H*Q4H

* WRITING AFTER EACH CALCULATION

50 WRITE (16,*) RHMLE(I)

60 CONTINUE

STOP

END
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APPENDIX B. PROGRAM RANVEC

PROGRAM RANVEC

THIS IS THE PROGRAM TO GENARETE RANDOM NUMBERS FROM BINOMIAL

* DISTRIBUTION.THE PROGRAM READS PROBABILITIES OF BEING SUCCESSFUL

IN FOUR TESTS INTERACTIVELY. IT GENERATES UNIFORMLY DISTRIBUTED

* RANDOM NUMBERS WITH THESE PROBABILITIES ACORDING TO SAMPLE SIZE

* OF EACH TEST. FOR EACH TEST PROGRAM COUNTS UNIFORMLY DISTRIBUTED

RANDOM NUMBERS, WHICH HAVE GREATER THAN OR EQUAL PROBABILITY

* WITH RESPECT TO THE GIVEN PROBABILITY FOR THAT TEST.TOTAL COUNTS

* GIVE US SUCCESSFUL ITEM NUMBERS FOR EACH TEST. PROGRAM UPDATES

* SEEDS AND CALLS SUBROUTINE RANNUM IN EACH ITERATION. THE PROGRAM

* GENERATES 5000 SUCCESS VECTOR AND WRITES THEM TO AN OUTPUT FILE

* CALLED SUSVECT.

* VARIABLES

* PSIM PROBABILITY OF SUCCESS IN MANUFACTURER TEST.

* PSITH PROBABILITY OF SUCCESS IN TEMP. AND HUMIDITY TEST.

* PSIV PROBABILITY OF SUCCESS IN VIBRATION TEST

* PSIA PROBABILITY OF SUCCESS IN ALTITUDE TEST

* NUMI COUNTER FOR MANUFACTURER TEST

* NUM2 COUNTER FOR TEMP. AND HUMIDITY TEST

* NUM3 COUNTER FOR VIBRATION TEST

* NUM4 COUNTER FOR ALTIUTDE TEST

* X BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR MANUFACTURER

* TEST

* V BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR TEMP.AND

* HUMUDITY TEST
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* Y BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR VIBRATION TEST

* Z BINOMIALLY DISTRIBUTED RANDOM NUMBER FOR ALTITUDE TEST

* A UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR MANUFACTURER

* TEST

* B UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR TEMP.AND

* HUMIDITY TEST

* C UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR VIBRATION TEST

* D UNIFORMLY DISTRIBUTED RANDOM NUMBER FOR ALTITUDE TEST

* ISEED SEED NUMBER FOR MANUFACTURER TEST

* KSEED SEED NUMBER FOR TEMP. AND HUMIDITY TEST

* LSEED SEED NUMBER FOR VIBRATION TEST

* MSEED SEED NUMBER FOR ALTITUDE TEST

* TYPE DECLARATION

REAL PSIM,PSITH,PSIV,PSIA,NUM1,NUM2,NUM3,NUM4,X(5000),V(5000)

+,Y(5000),Z(5000),A,B,C,D

INTEGER ISEED,KSEED,LSEED,MSEED

* INITIALIZATION

ISEED = 45267

KSEED = 113234

LSEED = 435

MSEED = 1

.. . . .. . .......~.A A A ;A :A.A ;A A ;A A A A ::;:A A A A :A................

* READING !EST PROBABILITIES OF BEING SUCCESSFUL IN EACH TEST

WRITE(*,*)'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN

+ MANUFACTURER TEST'

READ (*,*) PSIM

WRITE(*,*)'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN

+ TEMPERATURE AND HUMIDITY TEST'

READ (*,*) PSITH

WRITE(*,*)'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN

+ VIBRATION TEST'

READ (*,*) PSIV
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WRITE(*,*)'PLEASE WRITE PROBABILITY OF BEING SUCCESSFUL IN

+ ALTITIDE TEST'

READ (*,*) PSIA

* OPENING AN OUTPUT FILE TO WRITE THE RESULTS

CALL EXCMS ('FILEDEF 16 DISK SUSVECT DATA Al')

* GENERATION

DO 50 J=1,5000,1

* INITIALIZATION IN EACH ITERATION

NUMl= 0.0

NUM2= 0.0

NUM3= 0.0

NUM4= 0.0

* SEEDS UPDATATION IN EACH ITERATION

ISEED=ISEED+17

KSEED=KSEED+1356

LSEED=LSEED+l

MSEED=MSEED+789

* GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN MANUFACTURER TEST

DO 10 1=1,20,1

CALL RANNUM (1,ISEED,0.0,1.0,0.0,A)

IF ( A.LT.PSIM ) THEN

NUM1=NUM1+1

END IF

X(J) = NUM1

10 CONTINUE

*~~ ~~ *:A A A A AA.,..... ... .***** f. A i.********:AA**A*- 2 -- '

* GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN TEMP. AND HUM. TEST

DO 20 K=1,20,1

CALL RANNUM (1,KSEED,0.0,1.0,0.0,B)
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IF ( B.LT.PSITH ) THEN

NUM2=NUM2+1

END IF

V(J) = NUM2

20 CONTINUE

* GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN VIBRATION TEST

DO 30 L=1,32,1

CALL RANNUM (1,LSEED,0.0,1.0,0.0,C)

IF ( C.LT.PSIV ) THEN

NUM3=NUM3+1

END IF

Y(J) = NUM3

30 CONTINUE

* GENERATION OF SUCCESSFUL NUMBER OF ITEMS IN ALTITUDE TEST

DO 40 M=1,20,1

CALL RANNUM (1,MSEED,0.0,1.0,0.0,D)

IF ( D.LT.PSIA ) THEN

NUM4=NUM4+1

END IF

Z(J) = NUM4

40 CONTINUE

*~~~~ * A A * 2k i. * * .. A...AAAA;A~... . A A.;A...

* WRITING THE RESULTS TO AN OUTPUT FILE AS 4 TUPLE

WRITE (16,1) X(J),V(J),Y(J),Z(J)

1 FORMAT (IX,F12.7,4X,F12.7,4X,F12.7,4X,F12.7,4X)

50 CONTINUE

STOP

END

SUBROUTINE RANNUM(DISTN, SEED, RPARM1, RPARM2, IPARM, X)

* THIS SUBROUTINE IS A PART OF SIMUTIL FORTRAN WHICH IS WRITTEN
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* BY DR. M. P. BAILEY. THIS SUBROUTINE PROVIDES AN INTERFACE WITH

* THE LLRANDOMII ROUTINES PROVIDED IN THE NONIMSL LIBRARY. THE

* PARAMETER REQUIRMENTS AND CALLING PROCEDURES ARE AS FOLLOWS:

* DISTN = DISTRIBUTION TYPE YOU WANT TO SELECT AN INTEGER BETWEEN 1

* AND 7.

* SEED = THE RANDOM NUMBER SEED YOU WISH TO USE.

* RPARM1, RPARM2, AND IPARM ARE REAL AND INTEGER PARAMETERS PASSED

* TO THE ROUTINE WITH MEANINGS WHICH VARY WITH THE TYPE OF DISTRI_

* BUTION YOU DESIRE.

* X = THE RETURNED RANDOM NUMBER, IT IS ALWAYS REAL.

* DISTRIBUTION NUMBERS AND THE ASSOCIATED PARM DEFINITIONS

* 1--UNIFORM ON THE INTERVAL RPARM1 TO RPARM2.

* 2--NORMAL WITH MEAN RPARM1 AND VARIANCE RPARM2.

* 3--EXPONENTIAL WITH RATE RPARM1.

* 4--COUCHY WITH A = RPARM1 AND B = RPARM2.

* 5--GAMMA WITH SHAPE RPARM2 AND RATE RPARM1.

* 6--POISSON WITH RATE RPARM1.

* 7--GEOMETRIC WITH P = RPARM1.

* **AA** A**** * * h;*. ***** *****************.

* TYPE DECLARATION

REAL RPARM1,RPARM2,X,TEMP,VARIAT(1)

INTEGER DISTN, SEED, IPARM, N

IF (DISTN.LE.O.OR.DISTN.GT.8) THEN

WRITE(10, *) 'ILLEGAL CALL TO RANNUM, BAD DISTN'

STOP

ENDIF

GOTO (10, 20, 30, 40, 50, 60, 70), DISTN

* GENERATE A UNIFORM BETWEEN RPARM1 AND RPARM2

10 CONTINUE

IF (RPARMI - RPARM2.EQ.0) THEN

WRITE(10, *) 'ILLEGAL EQUAL RPARMS IN RANNUM'

STOP
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ENDIF

IF (RPARMI.GT.RPARM2) THEN

TEMP = RPARM1

RPARM1 = RPARM2

RPARM2 = TEMP

ENDIF

CALL LRND(SEED, VARIAT, 1, 1, 0)

VARIAT(1) = RPARM1 + (RPARM2 - RPARM1) * VARIAT(1)

GOTO 80

• GENERATE A NORMAL WITH MEAN RPARM1 AND STDDEV RPARM2

20 CALL LNORM(SEED, VARIAT, 1, 1, 0)

VARIAT(1) = (VARIAT(1) * RPARM2) + RPARM1

GOTO 80

* ******* *** * *II.**:A

• GENERATE AN EXPONENTIAL WITH RATE (1/MEAN) RPARM1

30 CONTINUE

IF (RPARM1.EQ.0) THEN

WRITE(10, *) 'ILLEGAL ZERO RATE IN RANNUM'

STOP

ENDIF

CALL LEXPN(SEED, VARIAT, 1, 1, 0)

VARIAT(1) = VARIAT(1) / RPARM1

GOTO 80

* GENERATE A COUCHY WITH A = RPARM1 AND B = RPARM2

40 CONTINUE

IF (RPARM2.LE.0) THEN

WRITE(IO, *) 'ILLEGAL COUCHY SPREAD IN RANNUM, B = ',RPARM2

STOP

ENDIF

CALL LCCHY(SEED, VARIAT, 1, 1, 0)

VARIAT(1) = (VARIAT(1) * RPARM2) + RPARM1

0



GOTO 80

.*. . .. * * * *** ** * * * *.h ** 

* GENERATE GAMMA WITH SHAPE RPARMW AND RATE RPRAM1

50 CONTINUE

IF (RPARMI.LE.0) THEN

WRITE(10, *) 'ILLEGAL NONPOSITIVE GAMMA RATE IN RANNUM'

STOP

ENDIF

IF (RPARM2.LE.0) THEN

WRITE(10, *) 'ILLEGAL SHAPE PARAMETER IN RANNUM'

STOP

ENDIF

CALL LGAMA(SEED, VARIAT, 1, 1, 0, RPARM2)

VARIAT(1) = VARIAT(1) * (1.0 / RPARM1)

GOTO 80

* GENERATE POISSON WITH RATE RPRAM1

60 CONTINUE

IF (RPARMI.LE.O) THEN

WRITE(10, *) 'ILLEGAL POISSON RATE IN RANNUM'

STOP

ENDIF

CALL LPOIS(SEED, VARIAT, 1, 1, 0, RPARM1)

GOTO 80
* *********************

* GENERATE GEOMETRIC WITH P = RPRAM1

70 CONTINUE

IF (RPARM1.LE.0) THEN

WRITE(10, *) 'ILLEGAL GEOM PROB IN RANNUM'

STOP

ENDIF

CALL LGEOM(SEED, VARIAT, 1, 1, 0, RPARM1)

GOTO 80

80 CONTINUE
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X = VARIAT(1)

END
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APPENDIX C. PROGRAM SORT

PROGRAM SORT

* THIS IS THE SORTING PROGRAM. PROGRAM USES BUBBLE SORT ALGORITHM.

* PROGRAM READS ESTIMATED RELIABILITIES FROM AN INPUT FILE CALLED

RESULT. IT SORTS FROM SMALLEST TO LARGEST, AND WRITES IN TO AN

* OUTPUT FILE CALLED FRESULT WITH 95 % LOWER CONFIDENCE BOUND.

* VARIABLES

* A ESTIMATED RELIABILITY

* FLAG INDICATOR VARIABLE TAKES VALUE 'OF 'AND 'OFF'

, .. .***..*****-*.*.'- *.*.******.. **

* TYPE DECLARATION

CHARACTER FLAG*3

REAL A(5000)

INTEGER I,N,J

* OPENING AN INPUT AND AN OUTPUT FILE

CALL EXCMS ('FILEDEF 9 DISK RESULT DATA Al')

CALL EXCMS ('FILEDEF 15 DISK FRESULT DATA Al')

* READING ESTIMATED RELIABILITIES

DO 10 I=1,5000

READ(9,*) A(I)

10 CONTINUE

* SORTING OPERATION

N=I-1
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DO 30 I=N,2,-I

FLAG='OFF'

DO 20 J=1,I-1

IF (A(J).GT.A(J+1)) THEN

TEMP=A(J)

A(J)=A(J+1)

A(J+I)=TEMP

FLAG='ON'

END IF

20 CONTINUE

IF (FLAG.EQ.'OFF') THEN

GO TO 40

END IF

30 CONTINUE

40 CONTINUE

* WRITING THE RESULTS IN ASCENDING ORDER TO OUTPUT FILE

DO 50 I=1,5000

WRITE (15,*) A(I)

50 CONTINUE

WRITE (15,1) A(250)

FORMAT (///,15X,'95 % LOWER CONFIDENCE BOUND IS',lX,F12.7)

STOP

END
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APPENDIX D. PROGRAM INITIAL

PROGRAM INITIAL

* THIS PROGRAM, CALCULATES INITIAL GUESSES FOR PARAMETERS IN

* LOGLINEAR MODEL BY MEANS OF PROGRAM PARAM WHICH IS IN APPENDIX E.

* PROGRAM SUPPLIES PARTIAL SUMS OF EXPECTATION, TO SOLVE EQUATIONS

* IN PROGRAM PARAM. IT READS INTERACTIVELY NUMBER OF FAILURES IN

* TESTS. PROGRAM WRITES RESULTS TO AN OUTPUT FILE CALLED EXPECT.

* VARIABLES

* FOM NUMBER OF FAILURES IN MANUFACTURER TEST

* FOTH NUMBER OF FAILURES IN TEMPERATURE AND HUMIDITY TEST

* FOV NUMBER OF FAILURES IN VIBRATION TEST

* FOA NUMBER OF FAILURES IN ALTITUDE TEST

* P1 SUCCESS RATIO FOR MANUFACTURER TEST

* P2 SUCCESS RATIO FOR TEMPERATURE AND HUMIDITY TEST

* P3 SUCCESS RATIO FOR VIBRATION TEST

* P4 SUCCESS RATIO FOR ALTITUDE TEST

* QI FAILURE RATIO FOR MANUFACTURER TEST

* Q2 FAILURE RATIO FOR TEMPERATURE AND HUMIDITY TEST

* Q3 FAILURE RATIO FOR VIBRATION TEST

* Q4 FAILURE RATIO FOR ALTITUDE TEST

* X1 PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 1

* X2 PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 2

* X3 PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 3

* X4 PARTIAL SUM OF EXPECTED NUMBERS IN CELLS FOR EQUATION 4

* TYPE DECLARATION
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REAL FOM,FOTH,FOV,FOA,P1,P2,P3,P4,QI,Q2,Q3,Q4,PROD,XI,X2,X3,X4

* OPENING AN OUTPUT FILE

CALL EXCMS ('FILEDEF 13 DISK EXPECT DATA Al')

* READING NUMBER OF FAILURES IN EACH TEST INTERACTIVELY

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN MANUFACTURER TEST'

READ(*,*) FOM

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN TEMP.AND HUM.TEST'

READ(*,*) FOTH

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN VIBRATION TEST'

READ(*,*) FOV

WRITE(*,*)'PLEASE WRITE NUMBER OF FAILURES IN ALTITUDE TEST'

READ(*,*) FOA

CALACULATION OF SUCCESS RATIOS

P1=(20.0-FOM)/8.00

P2=(20.0-FOTH)/8.00

P3=(32.0-FOV)/8.O0

P4=(20.0-FOA)/8.O0

* CALCULATION OF FAILURE RATIOS

QI=FOM/8.00

Q2=FOTH/8.00

Q3=FOV/8.00

Q4=FOA/8.00

*............. .. ... .............. i. iAAfAAi

* CALCULATION PARTIAL SUMS OF EXPECTATION FOR PROGRAM PARAM

PROD=2.0*P3+2.0xQ3+2.0*P4+2.0*Q4

XI=4.0*PI+4.0*P2+PROD

X2=4.0*PI+4.0*Q2+PROD

X3=4.0*Q1+4.0*P2+PROD
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X4=4. O*Q 1+4. O*Q2+PROD

* WRITING THE RESULTS TO AN OUTPUT FILE

WRITE (13,*) X1,X2,X3,X4

STOP

END
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APPENDIX E. PROGRAM PARAM

PROGRAM PARAM

* THIS IS THE PROGRAM TO CALCULATE PARAMETERS OF LOGLINEAR MODEL

* WITH IMSL SUBROUTINE. IT TAKES PARTIAL SUMS FROM PROGRAM INITIAL

* AND SOLVES FOUR NONLINEAR EQUATIONS, WHICH HAVE FOUR UNKNOWNS.

* THE PROGRAM USES AN IMSL SUBROUTINE CALLED DNEQNF TO SOLVE THIS

* EQUATION.IT WRITES SOLUTIONS OF EQUATIONS TO OUTPUT FILE CALLED

* PARAM DATA.

* VARIABLES

* ITMAX MAXIMUM ITERATION NUMBER.

* N PARAMETER

* XGUESS INITIAL GUESS FOR FOUR NONLINEAR EQUATIONS.

* F NONLINEAR EQUATIONS.

* . . . .A* 6

* TYPE DECLARATION

* ......A;AA AAA ............. A*A.AAAA.A.A. .A.

PARAMETER (N=4)

REAL*8 ERRREL

INTEGER ITMAX,N

INTEGER K

REAL*8 FNORM,X(N),XGUESS(N)

EXTERNAL ACN

* ****,*-A.***nnnn~~~nnnnn~nn,.-*,.-*--*,

* OPENING A FILE FOR WRITING RESULTS
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CALL EXCMS ('FILEDEF 9 DISK PARAM DATA A')

* INITIAL GUESS

DATA XGUESS/3.5D0,3.5D0,3.5D0,3.5D0/

* INITIALIZATION

ERRREL =0.0001D0

ITMAX =10000

* CALLING OF IMSL SUBROUTINE

CALL DNEQNF ( ACN,ERRREL,N,ITMAX,XGUESS,X,FNORM)

* RESULTS

WRITE (9,1) (X(K),K=1,N),FNORM

1FORMAT('THE SOLUTION TO THE SYSTEM IS',/,'X-(',4F8.2,')',/,'WITH

+FNORM=' ,F8.2,//)

END

SUBROUTINE ACN (X,F,N)

* VARIABLES

* X INITIAL GUESS

* F NONLINEAR EQUATIONS

* TYPE DECLARATION

REAL*8 X(N),F(N)

INTEGER N

1 1ST EQUATION

F( 1)=DEXP(X(1) )*(DEXP(X(2)+X(3)+X(4))+

+ (1/DEXP(X(2)+X(3)+X(4)))+

+ (DEXP(X(2)+X(3))/DEXP(X(4)))+

+ (DEXP(X(2)+X(4))/DEXP(X(3)))+(DEXP(X(3)

+ +X(4))/DEXP(X(2)))+(DEXP(X(2))/DEXP(X(3)+X(4)))+
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+ (DEXP(X(3))/DEXP(X(2)

+ +X(3)))+(DEXP(X(4))/DEXP(X(2)+X(3) )))-LOG(32.00)

* 2 ST EQUATION

F(2)=DEXP(X( 1)+X(2))*(DEXP(X(3)+X(4) )+

+ (1/DEXP(X(3)+X(4)))+(DEXP(X(3))/

+ DEXP(X(4)))+(DEXP(X(4))/DEXP(X(3))) )-LOG(23.00)

* 3 ST EQUATION

F(3)=DEXP(X( 1)+X(3) )*(DEXP(X(2)+X(4) )+

+ (1/DEXP(X(2)+X(4)))+(DEXP(X(2))/

+ DEXP(X(4) ))+(DEXP(X(4) )/DEXP(X(2) ) ))-LOG(23 .00)

* 4 ST EQUATION

F(4)=DEXP(X( 1)+X(4) )*(DEXP(X(2)+X(3) )+

+ (1/DEXP(X(2)+X(3)))+(DEXP(X(2))/

+ DEXP(X(3) ))+(DEXP(X(3) )/DEXP(X(2)) ))-LOG( 14.00)

RETURN

END
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APPENDIX F. PROGRAM LLMDEP

PROGRAM LLMDEP

* THIS IS THE FORTRAN PROGRAM TO CALCULATE THE RELIABILITY

* OF PYROTECHNIC DEVICE. IT ASSUMES THAT THERE IS A DEPENDENCE

* BETWEEN MANUFACTURER AND ENVIRONMENT TESTS. EXPECTATION-MAXIMIZA_

* TION ALGORITHM IS USED IN THIS MODULE. ALGORITHM STARTS WITH

* INITIAL GUESSES FOR PARAMETERS AND ESTIMATES EXPECTATIONS. IT

* RECALCULATES CELL PROBABILITIES AND UPDATES EXPECTATIONS UNTIL

* IT CONVERGES. AN ITERATIVE NEWTON AND RAPHSON PROCEDURE IS USED

* DURING UPDATATION OF CELL PROBABILITIES. THIS PROCEDURE IS DONE

* BY A SUBROUTINE NAMED UCPROB.

* VARIABLES

* FOM NUMBER OF FAILURES IN MANUFACTURER TEST.

* FOTH NUMBER OF FAILURES IN TEMP. AND HUMIDITY TEST.

* FOV NUMBER OF FAILURES IN VIBRATION TEST.

* FOA NUMBER OF FAILURES IN ALTITUDE TEST.

* MU OVERALL MEAN.

* LP1 MEAN EFFECT OF MANUFACTURER TEST.

* LP2 MEAN EFFECT OF MANUFACTURER TEST.

* LP3 MEAN EFFECT OF MANUFACTURER TEST.

* LP4 MEAN EFFECT OF MANUFACTURER TEST.

* TETHA TWO WAY INTERACTION TERMS

* RHMLE RELIABILITY OF DEVICE

* MPPPP CELL FREQUENCY WITH RESPECT TO TESTS RESULTS.

* MPOPO SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES

* MANUFACTURER AND VIBRATION TEST.
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* MPOOO SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES

* MANUFACTURER TEST.

* IP INITIAL PROBABILITY VECTOR

* FP UPDATED (FINAL) PROBABILITY VECTOR

* Y CELL EXPECTATION VECTOR

* A,B,C SOME TERMS TO MAKE THE CALCULATIONS EASY.

* EXPPPP EXPECTED NUMBER OF DEVICES IN CELL WHICH

* HAS A RESULTANT VECTOR ( P P P P ) IN MANUFACTURER,

* TEMPERATURE, VIBRATION AND ALTITUDE TEST RESPECTIVELY

* FLAG INDICATOR VARIABLE OF CONVERGENCE FOR PARAMETERS.

* RHMLE ESTIMATED RELIABILITY OF PYROTECHNIC DEVICE.

* TYPE DECLERATION

PARAMETER (K=10000)

LOGICAL FLAG( 16)

INTEGER I

REAL FOM, FOTH, FOV, FOA, LP1, LP2, LP3, LP4, TETHA

REAL MPPPP ,MPPPF ,MPPFP ,MPPFF,

+ MPFPP,MPFPF ,MPFFP,MPFFF,

+ MFPPP,MFPPF,MFPFP,MFPFF,

+ MFFPPMFFPF,MFFFP,MFFFF

REAL EXPPPP(K),EXPPPF(K),EXPPFP(K) ,EXPPFF(K),

+ EXPFPP(K) ,EXPFPF(K) ,EXPFFP(K) ,EXPFFF(K),

+ EXFPPP(K).,EXFPPF(K) ,EXFPFP(K),EXFPFF(K),

+ EXFFPP(K) ,EXFFPF(K) ,EXFFFP(K) ,EXFFFF(K)

REAL MPOOO, MFOOO, MPPOO, MPOPO, MPOOP, A, B, C

REAL IP(16,1),FP(16,1),X(16)

REAL Y(16)

COMMON / PROB / Y
A A A A*A AA A A*A A*0.**c A h A A

CALL EXCMS ('FILEDEF 15 DISK END DATA Al ' )
A* * **A **AA*AA;.;.AtA AtAth A A* A * *:AiA AJA tA A:** A A A A A A'

* INITIALIZATION

RHMLE = 0.0
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EPS = 0.001

DO 10 L=1,16

FLAG(L)=.FALSE.

10 CONTINUE

* READING THE NUMBER OF FAILURES IN EACH TEST INTERACTIVELY

WRITE(*,*)'PLEASE ENTER THE # OF FAILURES IN MANUFACTURER TEST'

READ(*,*) FOM

WRITE(*,*)'PLEASE ENTER THE # OF FAILURES IN TEMP. AND HUM. TEST'

READ(*,*) FOTH

WRITE(*,*)'PLEASE ENTER THE # OF FAILURES IN VIBRATION TEST'

READ(*,*) FOV

WRITE(*,*)'PLEASE ENTER THE # OF FAILURES IN ALTITUDE TEST'

READ(*,*) FOA

* READING THE INITIAL GUESS FOR EACH CELL IN HYPOTHETICAL

* CONTINGENCY TABLE

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPPP'

READ(*,*) MPPPP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPPF'

READ(*,*) MPPPF

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPFP'

READ(*,*) MPPFP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPPFF'

READ(*,*) MPPFF

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFPP'

READ(*,*) MPFPP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFPF'

READ(*,*) MPF-F

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFFP'

READ(*,*) MPFFP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MPFFF'

READ(*,*) MPFFF

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFPPP'
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READ(*,*) MFPPP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFPPF'

READ(*,*) MFPPF

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFPFP'

READ(,.,*) MFPFP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFPFF'

READ(*,*) MFPFF

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFFPP'

READ(*,*) MFFPP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFFPF'

READ(*,*) MFFPF

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFFFP1

READ(*,*) MFFFP

WRITE (*,*)'PLEASE ENTER INITIAL GUESS FOR MFFFF'

READ(*,*) MFFFF

* CALCULATION OF INITIAL PROBABALITIES USING CELL FREQUENCIES

IP(1,1) = MPPPP/92.OO

IP(2,1) = MPPPF/92.OO

IP(3,1) = MPPFP/92.OO

IP(4,1) = MPPFF/92.OO

IP(5,l) = !PFPP/92.OO

IP(6,1) = MPFPF/92.OO

IP(7,1) = MPFFP/92.OO

IP(8,1) = MPFFF/92.OO

IP(9,1) = MFPPP/92.OO

IP(1O,l)= MFPPF/92.OO

IP(11,1)= MFPFP/92.OO

IP(12,1)= MFPFF/92.OO

IP(13,1)= MFFPP/92.OO

IP(14,l)= MFFPF/92.OO

IP(15,1)= MFFFP/92.OO
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IP(16,1)= MFFFF/92.00

* DETERMINATION OF INITIAL FREQUENCIES FOR LIKELIHOOD ESTIMATION

Y(1) = MPPPP

Y(2) = MPPPF

Y(3) = MPPFP

Y(4) = MPPFF

Y(5) = MPFPP

Y(6) = MPFPF

Y(7) = MPFFP

Y(8) = MPFFF

Y(q) = MFPPP

Y(10)= MFPPF

Y(11)= MFPFP

Y(12)= MFPFF

Y(13)= MFFPP

Y(14)= MFFPF

Y(15)= MFFFP

Y(16)= MFFFF

* CALL A SUBROUTINE WHICH UPDATES CELL PROBABILITIES USING NEWTON

* AND RAPHSON PROCEDURE

CALL UCPROB( IP,FP )
*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

* UPDATATION OF CELL FREQUENCIES

MPPPP=FP( 1, l)*92 .00

MPPPF=FP(2, l)*92.00

MPPFP=FP(3, l)*92.00

MPPFF=FP(4, l)*92.00

MPFPP=FP(5 , )*92 .00

mPrF=FP(6, l)*92 .00

MPFFP=FP( 7, 1)*92 .00

MPFFF=FP(8, 1)*92 .00

MFPPP=FP(9 ,1)*92 .00
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MFPPF=FP( 10, 1)*92 .00

MFPFP=FP( 11, 1)*92 .00

MFPFF=FP( 12, 1)*92 .00

MFFPP=FP( 13, 1)*92.00

MFFPF=FP( 14, 1)*92 .00

MFFFP=FP( 15, 1)*92 .00

MFFFF=FP( 16, 1)*92 .00

* INITIAL EXPECTATIONS

EXPPPP( 1)=MPPPP

EXPPPF( 1)=MPPPF

EXPPFP( 1)=MPPFP

EXPPFF( 1)=MPPFF

EXPFPP( 1)=MPFPP

EXPFPF( 1)=MPFPF

EXPFFP( 1)=MPFFP

EXPFFF( 1)=MPFFF

EXFPPP( 1) =1FPPP

EXFPPF( 1)=MFPPF

EXFPFP( 1)=MFPFP

EXFPFF( 1)=MFPFF

EXFFPP( 1)=MFFPP

EXFFPF( 1)=MFFPF

EXFFFP( 1)=MFFFP

EXFFFF( 1)=MFIFFF

.*

MPO 00=MPPPP+MPPPF+MPPFP+MPPFF+MPFPP+MPFPF+MPFFP+MPFFF

UFO 00=MFPPP+MFPPF+MFPFP+MFPFF+MFFPP+MFFPF+M MFP+MFFFF

MPPOO=MPPPP+MPPPF+MPPFP+IPPFF

!IPO PO=MPPPP+IIPPPF+MPFPP+MPFPF

MPOOP=MPPPP+MPPFP+MPFPP+MPFFP

A=92.00-MPPOO

B=92 .00-MPOPO
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C=92 .00-MPOOP

* NEXT EXPECTATIONS

DO 20 1=2,K

EXPPPP(I)=(20.0O-FOM)*(MPPPP/MPOOO)+(20 .00-FOTH)*(MPPPP/MPPOO)+

" (32.00-FOV)*(MPPPP/MP0PO)+(20.00-FOA)*(MPPPP/MPOOP)

IF(ABS(EXPPPP(I)-EXPPPP(I-1)).LE.EPS) THEN

FLAG( 1)=.TRUE.

END IF

EXPPPF(I)=(2O.0-FOM)*(MPPPF/MP000)+(20.00-FOTH)*(MPPPF/MPPOO)+

" (32.00-FOV)*(MPPPF/MPOP0)+FOA*(MPPPF/C)

IF(ABS(EXPPPF(I)-EXPPPF(I-1))YLE.EPS) THEN

FLAG(2)=.TRUE.

END IF

EXPPFP(I)=(20.00-FOM)*(MPPFP/MP000)+(20.Q0-FOTH)*(MPPFP/MPP00)+

" FOV*(MPPFP/B)+(20.00-FOA)*(MPPFP/MPOOP)

IF(ABS(EXPPFP(I)-EXPPFP(I-l)).LE.EPS) THEN

FLAG(3)=.TRUE.

END IF

EXPPFF(I)=C2O.00-FOM)*(MPPFF/MPOOO)+(20.O0-FOTH)*(MPPFF/MPP00)+

" FOV*(MPPFF/B)+FOA*(MPPFF/C)

IF(ABS(EXPPFF(I)-EXPPFF(I-1)).LE.EPS) THEN

FLAG(4)=. TRUE.

END IF

EXPFPP(I)=(20.O0-FOM)*(MPFPP/MPOOO)+FOTH*(MPFPP/A)+(32.00-FOV)*

" CMPFPP/MPOPO)+(20.00-FOA)*(MPFPP/MPOOP)

IF(ABS(EXPFPP(I)-EXPFPP(I-1)).LE.EPS) THEN

FLAG(5)=.TRUE.

END IF

EXPFPF(I)=(20 .00-FOM)*(MPFPF/MPOOO)+FOTH*(MPFPF/A)+(32.0O-FOV)*

" (MPFPF/MPOPO)+FOA*(MPFPF/C)

IF(ABS(EXPFPF(I)-EXPFPF(I-l)).LE.EPS) THEN

FLAG(6)=.TRUE.

END IF
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EXPFFP(I)=(2O.OO-FOM)*(MPFFP/MPOOO)+FOTH*(MPFFP/A)+FOV*(MPFFP/B)+

" (20.OO-FOA)*&IMPFFP/MPOOP)

IF(ABS(EXPFFP(I)-EXPFFP(I-1)).LE.EPS) THEN

FLAG(7)=.TRUE.

END IF

EXPFFF( I )(20.OO-FOM)*(MPFFF/MPOQ)+FOTH*(MPFFF/A)+FOV*(MPFFF/B)+

" FOA*(MPFFF/C)

IF(ABS(EXPFFF(I)-EXPFFF(I-l)).LE.EPS) THEN

FLAG(8)=.TRUE.

END IF

EXFPPP( I)=FOM*(MFPPP/MFOOQ )+FOTH*(MFPPP/A)+FOV*(MFPPP/B)+FOA*

" (MFPPP/C)

IF(ABS(EXFPPP(I)-EXFPPP(I-l)).LE.EPS) THEN

FLAG(9)=.TRUE.

END IF

EXFPPF(T)=FQM*(MFPPF/MFOOO )+FOTH*(MFPPF/A)+FOV*(MFPPF/B)+FOA*

" (HFPPF/C)

IF(ABS(EXFPPF(I)-EXFPPF(I-1)) .LE.EPS) THEN

FLAG( 1O)=.TRUE.

END IF

EXFPFP( I)=FQM*(MFPFP/MFOOO)+FQTH*(MFPFP/A)+FOV*(MFPFP/B)+FOA*

+ (MFPFP/C)

IF(ABS(EXFPFP(I)-EXFPFP(I-1)) .LE.EPS) THEN

FLAG( 11)=.TRUE.

END IF

EXFPFF( I)=FOM*(MFPFF/MFOOO)+FOTH*CMFPFF/A)+FOV*(MFPFF/B )+FOA*

" (MFPFF/C)

IF(ABS(EXFPFF(I)-EXFPFF(I-1)).LE.EPS) THEN

FLAG(12)=.TRUE.

END IF

EXFFPP( I)=FOM*(MFFPP/MFOOO )+FOTH*(MFFPP/A)+FOV*(MFFPP/B)+FOA*

+ (MFFPP/C)

IF(ABS(EXFFPP(I)-EXFFPP(I-1)) .LE.EPS) THEN

FLAG( 13)=.TRUE.
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END IF

EXFFPF( I )FOM*(MFFPF/MFOOO)+FOTH*(MFFPF/A)+FOV UI-(FFPF/B)+FOA*

+ (MFFPF/C)

IF(ABS(EXFFPF(I)-EXFFPF(I-1)).LE.EPS) THEN

FLAG( 14)=.TRUE.

END IF

EXFFFP( I )FOM*(MFFFP/MFOOO )+FOTH*(MFFFP/A)+FOV*(MFFFP/B)+FOA*

+ (MFFFP/C)

IF(ABS(EXFFFP(I)-EXFFFP(I-1)).LE.EPS) THEN

FLAG( 15)=.TRUE.

END IF

EXFFFF(1I)=FOM*(MFFFF/MFOQO)+FOTH*(MFFFF/A)+FOV*(MFFFF/B)+FOA*

+ (MFFFF/C)

IF(ABS(EXFFFF(I)-EXFFFF(I-l)).LE.EPS) THEN

FLAG( 16)=.TRUE.

END IF

MPPPP =EXPPPP(I)

MPPPF = EXPPPF(I)

MPPFP = EXPPFP(I)

MPPFF = EXPPFF(I)

MPFPP = EXPFPP(I)

MPFPF = EXPFPF(I)

MPFFP = EXPFFP(I)

MPFFF = EXPFFF(I)

MFPPP = EXFPPP(I)

MFPPF = EXFPPF(I)

HFPFP = EXFPFP(I)

MFPFF = EXFPFF(I)

MFFPP = EXFFPP(I)

MFFPF = EXFFPF(I)

MFFFP = EXFFFP(I)
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MFFFF = EXFFFF(I)

* CHECK FOR THE STOPING CONDITION

IF( FLAG(1).AND.FLAG(2).AND.FLAG(3).AND.FLAG(4).AND.FLAG(5)

" .AND.FLAG(6).AND.FLAG(7).AND.FLAG(8).AND.FLAG(9).AND.FLAG(10)

" .AND.FLAG( 11) .AND.FLAG( 12) .AND.FLAG( 13) .AND.FLAG( 14) .AND.

+ FLAG(15).AND.FLAG(16)) THEN

* CALCULATION OF FINAL EXPPPP (STOPING CONDITION IS MET)

RHMLE=EXPPPP(I)/92. 00

GO TO 30

END IF

* STOPING CONDITION IS NOT MET. PROBABILITIES FOR THE NEXT

NEWTON AND RAPHSON PROCEDURE

IP(l,l) = MPPPP/92.00

IP(2,1) = MPPPF/92.00

IP(3,1) = MPPFP/92.O0

IP(4,1) = MPPFF/92.0O

IP(5,1) = MPFPP/92.0O

TP(6,1) = MPFPF/92.0O

IP(7,1) = MPYFP/92.00

IP(8,1) = MPFFF/92.0O

IP(9,1) = FPPP/92.0O

IP(10,1)= MFPPF/92.00

IP(11,1)= IFPFP/92.0

IP(12,1)= MFPFF/92.O0

IP(13,1)= MFFPP/92.O0

IP(14,1)= MFFPF/92.0O

IP(15,1)= MFFFP/92.O0

IP(16,1)= MFFFF/92.OO

CALL UCPROB(IP,FP)
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IIPPPP=FP( 1, 1)*92.O0

MPPPF=FP(2, 1)*92.00

MPPFP=FP( 3, 1>'92.00

MPPFF=FP(4, 1)*92.00

MPFPP=FP(5, 1)*92 .00

tIPFPF=FP(6, 1)*92.00

MPFPP=FP( 7, 1)*92 .00

MPFFF=FP( 8, 1)*92.00

MFPPP=FP(9, 1)*92 .00

MFPPF=FP( 10 ,1)*92. 00

MFPFP=FP( 11, 1)*92 .00

MFPFF=FP( 12, 1)*92 .00

MFFPP=FP( 13, 1)*92 .00

MFFPF=FP( 14, 1)*92.00

MFFFP=FP( 15, 1)*92 .00

MFFFF=FP( 16, 1)*92.00

MPO 0 =MPPPP+MPPPF+iMPPFP+I4PPFF4IiPFPP4IiPFPF+bIPFFP+MPFFF

MFO 00 MFPPP+MFPPF+MFPFP+MFPFF+MFFPP+MFFPF+MFFFP+MFFFF

MPPO OMPPPP+MPPPF+MPPFP+MPPFF

MPO PO=MPPPP+MPPPF+MPFPP+MPFPF

MPOOP=MPPPP+MPPFP+MPFPP+MPFFP

A=92 .00-lIPPOO

B=92.00-MPOPO

C=92 .00-MPOOP

20 CONTINUE

30 WRITE(15,40)FOM,FOTH,FOV,FOA,RHMLE

40 FORMAT(/,SX,".ASE' ,4X,F5.2,2X,F5.2,2X,F5.2,2X,F5.2,/,1SX,

+'MLE =',F12.7)

STOP



END

SUBROUTINE UCPROB (IP,FP)

* THIS SUBROUTINE UPDATES CELL PROBABILITIES USING NEWTON AND

* RAPHSON PROCEDURE WHICH IS DESCRIBED IN SAS

* VARIABLES

* FOM NUMBER OF FAILURES IN MANUFACTURER TEST.

* FOTH NUMBER OF FAILURES IN TEMP. AND HUMIDITY TEST.

* FOV NUMBER OF FAILURES IN VIBRATION TEST.

* FOA NUMBER OF FAILURES IN ALTITUDE TEST.

* MU OVERALL MEAN.

* LPl MEAN EFFECT OF MANUFACTURER TEST.

* LP2 MEAN EFFECT OF MANUFACTURER TEST.

* LP3 MEAN EFFECT OF MANUFACTUREP TEST.

* LP4 MEAN EFFECT OF MANUFACTURER TEST.

* TETHA TWO WAY INTERACTION TERMS

* RHMLE RELAIBILITY OF DEVICE

* MPPPP CELL FREQUENCY WITH RESPECT TO TESTS RESULTS.

* MPOPO SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES

* MANUFACTURER AND VIBRATION TEST.

* MPOOO SUM OF CELL FREQUENCIES WHICH HAVE PASSED DEVICES

* MANUFACTURER TEST.

* IP INITIAL PROBABILITY VECTOR

* FP UPDATED (FINAL) PROBABILITY VECTOR

* Y CELL EXPECTATION VECTOR

* A,B,C SOME TERMS TO MAKE THE CALCULATIONS EASY.

* EXPPPP EXPECTED NUMBER OF DEVICES IN CELL WHICH

* HAS A RESULTANT VECTOR ( P P P P ) IN MANUFACTURER,

* TEMPERATURE, VIBRATION AND ALTITUDE TEST RESPECTIVELY

* SIGN INDICATOR VARIABLE OF CONVERGENCE FOR PARAMETERS.

* RHMLE ESTIMATED RELIABILITY OF PYROTECHNIC DEVICE.
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* TYPE DECLERATION

LOGICAL SIGN(5)

REAL IP(16,1),FP(16,1)

REAL FO( 15,1) ,F1( 15,1) ,S( 15,15) ,X( 15,5) ,BO(5, 1),

+B1(5, 1) ,PIO( 15,1) ,PI1( 15,1) ,C(5 ,5) ,G(5 ,1) ,SINV( 15,15) ,F( 15,1),

+PRI (15,1) ,PR2(5,1),PR3(15,5),PR4(5,5),SUM,LAST,PIO1(16,1),LHE,

+LHEMAX,RIP( 15 ,1) ,PR5( 15 ,5) ,CINV(5 ,5) ,DIF( 15, 1) ,PR6(5, 1) ,LAMBDA,

+PI11( 16, 1) ,EPS,BLAST.5, 1) ,PLAST( 15,1) ,BNEW(5, 1) ,FLAST( 15, 1)

+,U,XT(5,15) ,PR4INV(5,5)

REAL Y(16)

COMMON / PROB / Y

INTEGER I,J,K

* INITIALIZATION

DO 50 I=1,5

SIGN(I)= .FALSE.

50 CONTINUE

DO 70 I=1,5

DO 60 J-1,5

S(I,J)=0.0

60 CONTINUE

70 CONTINUE

* READING THE DESIGN MATRIX

CALL EXCMS ('FILEDEF 9 DISK DESIGN INPUT Al')

DO 80 I=1,15

READ(9,*) X(I,1),X(I,2),X(I,3),X(I,4) ,X(I,5)

80 CONTINUE

REWIND 9

* INVERSE OF VARIANCE AND COVERIANCE MATRIX FOR INITIAL BO

DO 100 I=1,15
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DO 90 J=1,15

IF(I.EQ.J) THEN

SINV(I,I)=(IP(I,I)-(IP(I,I)**2.0))*92.00

END IF

IF(I.NE.J) THEN

SINV(I,J)=(-IP(J,1))*IP(I,I)*92.00

END IF

90 CONTINUE

100 CONTINUE

* LOGIT RESPONSE FUNCTIONS

DO 110 I=1,15

F(I,1) =ALOG(IP(I,1)/IP(16,1))

110 CONTINUE

* THE TRANSPOZE OF THE DESIGN MATRIX

CALL TRNRR (15,5,X,15,5,15,XT,5)

* *********......................A .X ., ja I $

* MATRIX MULTIPLICATION PR1=(SINV*F)

CALL MRRRR (15,15,SINV,15,15,1,F,15,15,1,PR1,15)
* .... AAAAAAA AAA

* MATRIX MULTIPLICATION PR2=(XT*PR1)

CALL MRRRR (5,15,XT,5,15,1,PR1,15,5,1,PR2,5)

* .........

* MATRIX MULTIPLICATION PR3=(SINV*X)

CALL MRRRR (15,15,SINV,15,15,5,X,15,15,5,PR3,15)

* MATRIX MULTIPLICATION PR4=(XT*PR3)

CALL MRRRR (5,15,XT,5,15,5,PR3,15,5,5,PR4,5)

* .:AAA;.:.AAAA:..A;AAAAAAA;.:AA;.A;.AAAAAA;..;;.;AAAAAA:AA

* INVERSE OF THE MATRIX MULTIPLICATION PR4=PR41NV

CALL LINRG (5,PR4,5,PR4INV,5)
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* INITIAL ESTIMATION OF PARAMETERS BO

* MATRIX MULTIPLICATION BO=(PR4INV*PR2)

CALL MRRRR (5,5,PR4INV,5,5,1,PR2,5,5,1,BO,5)

FO= X * BO

CALL MRRRR (15,5,X,15,5,1,BO,5,15,1,FO,15)

* INITIAL PROBABILITIES PIO=(EXP(FO))

DO 120 I=1,15

PIO(I,1)=EXP(FO(I,1))

120 CONTINUE

SUM=0.0

DO 130 1=1,15

SUM=SUM+PIO(I,1)

130 CONTINUE

LAST=1.0/(1.0+SUM)

* PROBABILITY MATRIX WHICH INCLUDES 16 VALUES PI01

* FOR THE INITIAL ESTIMATE OF LIKELIHOOD ESTIMATION

DO 140 I=1,15

PI01(I,1)=PIO(I,1)*LAST

140 CONTINUE

PIO1(16,1)=LAST
* ***. o. ......... ************- *********A A****** ***

* INITIAL LIKELIHOOD FOR NEXT ITERATION AT STEP BO

LHE=O.O

DO 150 I=1,16

LHE=LHE+Y(I)*ALOG(PIO1(I,I))

150 CONTINUE

LHEMAX=LHE
. *****.**A ***** L***,****A*********;***********AA.A*************

* REORGANIZED INITIAL PROBABILITIES FOR UPDATATION RIP

DO 160 1=1,15

RIP(I,1)=IP(I,I)
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160 CONTINUE

A* ** **:

* FIRST ITERATION IN NEWTON AND RAPHSON METHOD

DO 170 I=1,15

DO 180 J=1,15

IF(I.EQ.J) THEN

SINV(I,I)=(PI0(I,l)-(PI0(I,I)**-'2.0))*92.00

END IF

IF(I.NE.J) THEN

SINV(I,J)=(-PIO(J,1))*PIO(I,1)*92.00

END IF

170 CONTINUE

180 CONTINUE

* MATRIX MULTIPLICATION PR5=(SINV*X)

CALL MRRRR (15,15,SINV,15,15,5,X,15,15,5,PR5,15)

* MATRIX MULTIPLICATION C=(XT*PR5)

CALL MRRRR (5,15,XT,5,15,5,PR5,15,5,5,C,5)

**.. ..........

* INVERSE OF'THE MATRIX C=CINV

CALL LINRG (5,C,5,CINV,5)

.* . . .AAAAA; A . . . . A.. .. .. .. .. . . . . .. . .. .. AAA.: A:AAA

DO 190 1=1,15

DIF(I,1)= 92. 00*(RIP(I,1)-PIO(I,1))

190 CONTINUE
. . . . . . . . . . .. . . . . . . ..*. . . . . . . . . . . . . . .

* MATRIX MULTIPLICATION FOR G=(XT*DIF)

CALL MRRRR (5,15,XT,5,15,1,DIF,15,5,1,G,5)

* MATRIX MULTIPLICATION (PR6= CINV*G)

CALL MRRRR (5,5,CINV,5,5,1,G,5,5,1,PR6,5)

LAMBDA=1.0
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200 DO 210 1=1,5

PR6(I,1)=PR6(I,1)*LAMBDA

210 CONTINUE

* INITIAL VALUE FOR Bi

DO 220 I=1,5

i(!'I, I)=BO(I. I)-PR6(I, I)

220 CONTINUE

* MATRIX MULTIPLICATION F1=(X*B1)

CALL MRRRR (15,5,X,15,5,1,B1,5,15,1,F,15)

* CALCULATION OF PROBABILITIES FOR Bi PI1=EFP(F1)

DO 230 1=1,15

PI1(I,1)=EXP(FI(I,4))

230 CONTINUE

* CALCULATION OF THE 16 TH PROBABILITY VALUE

SUM=0.0

DO 240 1=1,15

SUM=SUM+PII(I,I)

240 CONTINUE

LAST=1.0/(1.0+SUM)

DO 250 1=1,15

PII(I,1)=PI1(I,I)*LAST

250 CONTINUE

PIII(16,1)=LAST

* INITIAL LIKELIHOOD ESTIMATION

LHE=O.0

DO 260 I=1,16

LHE=LHE+Y(I)*ALOG(PI1I(I,1))
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260 CONTINUE

K=O

EPSO0.001

IF(LHE.LT.LHEMAX) THEN

K=K±1

IF(K.GT.10) THEN

DO 270 I=1,5

BLAST(I ,1)=BO(I,1)

270 CONTINUE

DO 280 I=1,15

PLAST(I ,1)=PIOl( 1,1)

280 CONTINUE

GO TO 490

END IF

LAMBDA=LAMBDA/2 .0

GO TO 200

END IF

LHEMAX=LHE

DO 290 1=1,'5

IF(ABS(BO(I,1)-Bl(I,1)).LE.EPS) THEN

SIGN(I)=.TRUE.

END IF

290 CONTINUE

* ***************.1*... ... ......... :

* CHECKING CRITERIAS

IF(SIGN(1).AND.SIGN(2).AND.SIGN(3).AND.SIGN(4).AND.SIGN(5)) THEN

DO 300 1=1,5

BLAST(I ,1)=Bl(I, 1)

300 CONTINUE

DO 310 I=1,15

PLAST(I ,1)=PI11(I, 1)

310 CONTINUE
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GO TO 490

END IF

* CRITERIAS ARE NOT MET THEN NEW ITERATIONS

DO 320 1=1,5

BLAST(I,1)=B(I,1)

320 CONTINUE

DO 330 I=1,15

PLAST(I,1)=PI1(I,1)

330 CONTINUE

340 DO 360 1=1,15

DO 350 J=1,15

IF(I.EQ.J) THEN

SINV(I,I)=(PLAST(I,1)-(PLAST(I,1)**2.0)) *92.00

END IF

IF(I.NE.J) THEN

SINV(I,J)=(-PLAST(J,1))*PLAST(I,I)*92.00

END IF

350 CONTINUE

360 CONTINUE

* MATRIX MULTIPLICATION PR3=(SINV*X)

CALL MRRRR (15,15,SINV,15,15,5,X,15,15,5,PR3,15)

* *****A*** ** A* A A AAAA A* AA; AAA********

* MATRIX MULTIPLICATION C=(XT*PR3)

CALL MRRRR (5,15,XT,5,15,5,PR3,15,5,5,C,5)

A A*A*A***A- A A A A A*A*A*A* **A * A

CALL LINRG ( 5,C,5,CINV,5 )

DO 370 I=1,15

DIF(I,1)= 92.00*(RIP(I,1)-PLAST(I,1))
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370 CONTINUE

* MATRIX MULTIPLICATION G=(XT*DIF)

CALL MRRRR (5,15,XT,5,15, 1,DIF, 15,5,1,G,5)

* MATRIX MULTIPLICATION PR6=(CINV*G)

CALL MRRRR (5,5,CINV,5,5, 1,G,5,5, 1,PR6,5)

LAMBDA=1 .0

* NEW PARAMETER ESTIMATES

380 DO 390 I=1,5

BNEW(I,1)=BLAST(I,1)-(LAMBDA*PR6(I,1))

390 CONTINUE

* MATRIX MULTIPLICATION F1=(X*BNEW)

CALL MRRRR (1S,5,X, 15,5,1,BNEW,5, 15, 1,F1,15)

DO 400 I=1,15

Pl1(1, 1)=EXP(Fl1, 1))

400 CONTINUE

*itc

SUM=0.O

DO 410 I=1,15

SUM=SUM+PI1(I,1)

410 CONTINUE

LAST=1 .0/(1 .0+SUM)

DO 420 1=1,15

P111(1 ,1)=PI1(I,1)*LAST

420 CONTINUE

PI11( 16, 1)=LAST

* .*. .* AAAAAAAA***~,**--*

* LIKELIHOOD ESTIMATION

LHEO0.0
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DO 430 1=1,16

LHE=LHE+Y(I)*ALOG(PIII(I,1))

430 CONTINUE

K=O

EPS=O.001

IF(LHE.LT.LHEMAX) THEN

K=K+l

IF(K.GT.10) THEN

GO TO 490

END IF

LAMBDA=LAMBDA/2.0

GO TO 380

END IF

LHEMAX =LHE

DO 440 I=1,5

IF(ABS(BI(I,I)-BLAST(I,1)).LE.EPS) THEN

SIGN(I)=.TRUE.

END IF

440 CONTINUE

IF(SIGN(1).AND.SIGN(2).AND.SIGN(3).AND.SIGN(4).AND.SIGN(5)) THEN

DO 450 1=1,5

BLAST(I,1)=BNEW(I,1)

450 CONTINUE

DO 460 I=1,15

PLAST(I,1)=PIII(I,1)

460 CONTINUE

GO TO 490

END IF

* CRITERIAS ARE NOT MET THEN NEW ITERATIONS

DO 470 I=1,5
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BLAST(I,1)=B1(I,1)

470 CONTINUE

DO 480 1=1,15

PLAST(I,1)=PII1(I,1)

480 CONTINUE

GO TO 340

490 CONTINUE

* MATRIX MULTIPLICATION FLAST=(X*BLAST)

CALL MRRRR (15,5,X,15,5,1,BLAST,5,15,1,FLAST,15)

* CALCULATION OF FINAL PROBABILITIES

DO 500 1=1,15

PLAST(I,1)=EXP(FLAST(I,1))

500 CONTINUE

h*c * ******AAA

SUM=0.O

DO 510 1=1,15

SUM=SUM+PLAST(I,1)

510 CONTINUE

* ..A..AA.AAAAAAA.............. AA A **********AA AAAA .A A * **** *. *

LAST=1.0/(1.0+SUM)

DO 520 I=1,15

FP(I,1)=PLAST(I,1)*LAST

520 CONTINUE

FP( 16, 1)=LAST

RETURN

END
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APPENDIX G. PROGRAM MLEB

PROGRAM MLEB

* THIS IS THE PROGRAM TO CALCULATE RELIABILITY OF THE DEVICE

* WITH DEPENDENCE ASSUMPTION.PROGRAM ASSUMES THAT FAILED ITEM FROM

* ANY OF ENVIRONMENT TESTS FAILS FROM MANUFACTURER TEST TOO. THIS

* IS WORST CASE SCENARIO. IT READS NUMBER OF SUCCESSFUL ITEMS FROM

* AN INPUT DATA CALLED SUSVECT. FINALLY THE PROGRAM WRITES RESULTS

* TO AN OUTPUT FILE CALLED RESULT.

* VARIABLES

* SOM NUMBER OF SUCCESSFUL ITEMS IN MANUFACTURER TEST

* SOTH NUMBER OF SUCCESSFUL ITEMS IN TEMP. AND HUMIDITY TEST

* SOV NUMBER OF SUCCESSFUL ITEMS IN VIBRATION TEST

* SOA NUMBER OF SU"'ESSFUL ITEMS IN ALTITUDE TEST

* RIH ESTIMATED PROBABILITY OF PASSING FROM MANUFACTURER TEST

* R2H ESTIMATED PROBABILITY OF PASSING FROM TEMPRATURE AND

* HUMIDITY TEST

* R3H ESTIMATED PROBABILITY OF PASSING FROM VIBRATION TEST

* R4H ESTIMATED PROBABILITY OF PASSING FROM ALTITUDE TEST

* RHMLE ESTIMATED RELIABILITY OF ITEM AFTER EXPOSURE TO

* SEVERAL ENVIRONMENT TESTS.

* X DUMMY VARIABLE

* TYPE DECLARATION

REAL SOM(5000),SOTH(5000),SOV(5000),SOA(5000),X(4),RH,R2H,R3H,

+ R4H,RHMLE(5000)
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INTEGER I

* FILES FOR READING AND WRITING

CALL EXCMS ('FILEDEF 9 DISK SUSVECT DATA Al')

CALL EXCMS ('FILEDEF 17 DISK RESULT DATA Al')

* READING NUMBER OF SUCCESS IN EACH TEST

DO 10 I=1,5000

READ(9,*) SOM(I),SOTH(I),SOV(I),SOA(I)

* NUMBER OF SUCCESSES IN EACH TEST

X(1)= SOM(I)+SOTH(I)+SOV(I)+SOA(I)

X(2)= SOTH(I)

X(3)= SOV(I)

X(4)= SOA(I)

* CALCULATIONS SUCCESS PROBABILITIES IN EACH TEST

RIH= X(1)/184.0

R2H= X(2)/40.0

R3H= X(3)/64.0

R4H= X(4)/40.0

RHMLE(I)= R1H * R2H * R3H * R4H

*AAAAAA A A A AA.............

* WRITING RESULTS TO AN OUTPUT FILE CALLED RESULT

WRITE (17,*) RHMLE(I)

10 CONTINUE

STOP

END
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APPENDIX H. PROGRAM BONUS

PROGRAM BONUS

* THIS IS THE PROGRAM TO CALCULATE BONUS PERCENTAGE OF ANY FIRM

* WHOSE LONG RUN SUCCESS PROBABILITIES ARE KNOWN. IN THIS PROGRAM

* IT USES 2000 SUCCESS VECTORS, WHICH ARE GENERATED BY RANVEC IN

* APPENDIX B. THEY ARE GENERATED PY KNOWN LONG RUN PROBABILITIES

* THE PROGRAM USES TWO DATA SETS.THEY ARE PRECALCULATED LCB'S SETS

* .FIRST DATA REPRESENTS FIRST INSPECTION, SECOND DATA REPRESENTS

* SECOND INSPECTION LOWER CONFIDENCE BOUNDS.

* SUCCESS VECTORS REPRESENT OFFERED LOTS.IT HAS A DETERMINISTIC

* BONUS LINE.PROGRAM CALCULATES LCB OF OFFERED LOT,WITH FIRST DATA

* AND COMPARES IT WITH LCB OF BONUS LINE.IF FIRM LCB IS GRATER THAN

* FIRM GETS BONUS. OTHERWISE FIRM HAS A CHANCE TO ONE MORE TRY. IN

* SECOND TRY, PROGRAM CUMULATES SUCCESS VECTORS AND IT USES SECOND

* DATA TO FIND OUT LCB OF CUMULATED LOT. AFTER THIS CALCULATION IT

* COMPARES AGAIN. FINALLY IT COUNTS NUMBER OF TIMES THAT THE FIRM

* GETS THE BONUS IN 1000 REPLICATIONS AND ESTIMATES BONUS PERCENT.

* IT WRITES RESULTS TO AN OUTPUT FILE CALLED BONUS DATA.

* ****.*khc* A AA A* A* A,*A***********A*********

* VARIABLES

* SOM NUMBER OF SUCCESS IN MANUFACTURER TEST.

* SOTH NUMBER OF SUCCESS IN TEMPERATURE AND HUMIDITY TEST.

* SOV NUMBER OF SUCCESS IN VIBRATION TEST.

* SOA NUMBER OF SUCCESS IN ALTITUDE TEST.

* BLINE LOWER CONFIDENCE BOUND OF BONUS LINE

* LCB LOWER CONFIDENCE BOUND

* FILCB LCB VALUES ARRAY IN FIRST INSPECTION
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* SELCB LCB VALUES ARRAY IN SECOND INSPECTION

* A,B,C,D DIMENSIONS FOR USE OF LCB DATAS

* BFI NUMBER OF TIMES THAT FIRM GAT BONUS AFTER 1 ST INSP.

BSI NUMBER OF TIMES THAT FIRM GAT BONUS AFTER 2 ST INSP.

* BTOT TOTAL NUMBER OF TIMES THAT FIRM GAT BONUS.

* PRCT BONUS PERCENT.

* COUNT COUNTER FOR 1000 REPLICATIONS.

* SIGN INDICATOR OF ACCEPTANCE FOR FIRST INSPECTION

* FLAG INDICATOR OF ACCEPTANCE FOR SECOND INSPECTION

* TYPE DECLARATION

LOGICAL SIGN(4),FLAG(4)

REAL SOM(2000),SOTH(2000),SOV(2000),SOA(2000),BLINE,LCB,BFI,BSI,

+ BTOT,FILCB(2,2,3,2),SELCB(3,3,5,3),A,B,C,D,PRCT,COUNT

INTEGER I,J,K,L

* OPENING FILES FOR READING AND WRITING

CALL EXCMS ( ' FILEDEF 7 DISK SUCVECT DATA Al' )

CALL EXCMS ( ' FILEDEF 8 DISK FIRST DATA Al' )

CALL EXCMS ( ' FILEDEF 9 DISK SECOND DATA Al' )

CALL EXCMS ( ' FILEDEF 15 DISK BONUS DATA Al' )

* INITIALIZATION

COUNT = 1.0

BFI = 0.0

BSI = 0.0

BLINE = 0.9250000

DO 10 I=1,4

SIGN(I)=.TRUE.

FLAG(I)=.TRUE.

10 CONTINUE

. *****..****-- ... . **A*-**-.**********

* READING FIRST INSPECTION LOWER CONFIDENCE BOUNDS FROM DATA FILE

DO 50 I=1,2
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DO 40 J=1,2

DO 30 K=1,3

DO 20 L=1,2

READ(8,*) FILCB(I,J,K,L)

20 CONTINUE

30 CONTINUE

40 CONTINUE

50 CONTINUE

* READING SECOND INSPECTION LOWER CONFIDENCE BOUNDS FROM DATA FILE

DO 90 1=1,3

DO 80 J=1,3

DO 70 K=1,5

DO 60 L=1,3

READ(9,*) SELCB(I,J,K,L)

60 CONTINUE

70 CONTINUE

80 CONTINUE

90 CONTINUE

* ~ A ------- ****A****.A~A A;..**** ;.*******AA;**

* READING SUCCESS PROBABILITY OF FIRM IN EACH TEST

WRITE(*,*)'WRITE THE PROBABILITY OF SUCCESS IN MANUFACTURER TEST'

READ (*,*) PSIM

WRITE(*,*)'WRITE THE PROBABILITY OF SUCCESS IN TEMPERATURE AND

+HUMIDITY TEST'

READ (*,*) PSITH

WRITE(*,*)'WRITE THE PROBABILITY OF SUCCESS IN VIBRATION TEST'

READ (*,*) PSIV

WRITE(*,*)'WRITE THE PROBABILITY OF SUCCESS IN ALTITUDE TEST'

READ (*,*) PSIA

.* ******AAA****** **** **

* READING NUMBER OF SUCCESFUL ITEMS

* FOR FIRST INSPECTION AND SECOND INSPECTION

DO 100 1=1,2000

127



READ(7,*) SOM(I),SOTH(I),SOV(I),SOA(I)

100 CONTINUE

AH

* INSPECTIONS BEGIN

DO 120 N=1,2000,2

* SUBSCRIPT DEFINITION FOR FIRST INSPECTION

A=INT(20 .0-SOM(N) )+l

B=INT(20 .0-SOTH(N) )+1

C=INT(32.0-SOV(N))+1

D=INT(20 .0-SOA(N))+l

* CHECK FOR ACCEPTANCE OF FIRST OFFERED LOT

IF (A.GT.2) THEN

SIGN(1)-.FALSE.

END IF

IF (B.GT.2) THEN

SIGN(2)=.FALSE.

END IF

IF (C.GT.3) THEN

SIGN(3)=.FALSE.

END IF

IF (D.GT.2) THEN

SIGN(4)=.FALSE.

END IF

IF(.NOT.(SIGN(l).AND.SIGN(2).AND.SIGN(3).AND.SIGN(4))) THEN

SIGN( 1)=.TRUE.

SIGN(2)=.TRUE.

SIGN(3)=.TRUE.

SIGN(4)=.TRUE.

GO TO 112

END IF

* *******A .A;,.....AA***:.A.A.......***********

* AFTER FIRST INSPECTION DETERMINATION OF LCB OF FIRM
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LCB=FILCB(A,B ,C,D)

* IS LOT WORTH WHILE FOR GETTING BONUS ?

IF ( LCB.GT.BLINE ) THEN

BFI=BFI+1 .0

GO TO 110

END IF

* SUBSCRIPT DETERMINATION FOR SECOND INSPECTION

A=A+INT(20 .0-SOM(N+1))

B=B+INT(20 .0-SOTH(N+1))

C=C+INT(32 .0-SOV(N+1))

D=D+INT(20 .0-SOA(N+1))

* CHECKING RESULTS OF SECOND TEST SERIES ABOUT ACCEPTANCE

IF (A.GT.3) THEN

FLAG( 1)=.FALSE.

END IF

IF (B.GT.3) THEN

FLAG(2)=.FALSE.

END IF

IF (C.GT.5) THEN

FLAG(3)=.FALSE.

END IF

IF (D.GT.3) THEN

FLAG(4)=.FALSE.

END IF

IF(.NOT.(FLAG(1).AND.FLAG(2).AND.FLAG(3).AND.FLAG(4))) THEN

FLAG( 1)=.TRUE.

FLAG(2)= .TRUE.

FLAG(3)=.TRUE.

FLAG(4)=.TRUE.

GO TO 112
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END IF

* AFTER SECOND INSPECTION DETERMINATION OF LCB

LCB=SELCB(A,B,C,D)

* CHECKING FOR BONUS AFTER SECOND INSPECTION

IF ( LCB.GT.BLINE ) THEN

BSI=BSI+1

GO TO 112

END IF

* COUNTING FOR CHECKING 1000 REPLICATIONS

110 COUNT = COUNT + 1.0

A=0.0BA=O. 0
B=0.0

C=0.0

D=0.0

* CHECKING FOR 1000 REPLICATIONS

IF (COUNT.GT.1000) THEN

GO TO 130

END IF

120 CONTINUE

.......;A .A....~ . ...... .. .. ... L ~ ,*

* PERCENTAGE ESTIMATION OF GETING BONUS FOR FIRM A

130 BTOT = BFI+BSI

PRCT=BTOT/1000.0

* ***, AA;.:. AAA.:.AAA:.:.AA:. A;A..A.A..AA....... .....

* WRITING RESULTS

WRITE (15,1)

1 FORMAT (//,16X,' BONUS PLAN SIMULATION FOR FIRM A ',2X)

WRITE (15,2)

2 FORMAT (16X,' ....... * ',2X,//)

WRITE (15,3)
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3 FORMAT(4X,' FIRM A HAS FOLLOWING LONG RUN PROBABILITIES IN TESTS

+,2X)

WRITE (15,4)

4 FORMAT(4X,'******************************************************'

+,/,2X)

WRITE (15,5) PSIM,PSITH,PSIV,PSIA

5 FORMAT(4X,'PROBABILITY OF SUCCESS IN MANUFACTURER TEST IS',2X,

+F8.6,//,4X,'PROBABILITY OF SUCCESS IN TEMP. AND HUM. TEST IS',2X,

+F8.6,//,4X,'PROBABILITY OF SUCCESS IN VIBRATION IS',2X,

+F8.6,//,4X,'PROBABILITY OF SUCCESS IN ALTITUDE IS',F8.6,2X,//)

WRITE (15,6) BFI

6 FORMAT(4X,'FIRM A GAT BONUS AFTER FIRST INSPECTION ',2X,F6.1,2X,

+'TIMES',2X)

WRITE (15,7)
7 FORMAT(4X, '************.*.*.**..****.*.****.*

+*****'2X ,/)

WRITE (15,8) BSI

8 FORMAT(4X,'FIRM A GAT BONUS AFTER SECOND INSPECTION ',2X,F6.1,2X,

+'TIMES',2X)

WRITE (15,9)

9 FORMAT(4X,'**** ***

+******' ,2X,/)

WRITE (15,11) BTOT

11 FORMAT(4X,'TOTALLY FIRM A GAT BONUS IN 1000 REPLICATIONS ', 2X,

+F5.1,2X,'TIMES',2X)

WRITE (15,12)

12 FORMAT(4X,'** ************** ********************************

+******',2X,/)

WRITE (15,13) PRCT

13 FORMAT(4X,'GETTING BONUS PERCENTAGE OF FIRM A IS',1X,F6.3,2X)

WRITE (15,14)

14 FORMAT(4X,'******h.
* A A***** *

+******',2X,///)

WRITE (15,15) BLINE
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15 FORMAT(4X,' BONUS LINE FOR FIRMS IS',1X,F6.4,2X)

WRITE (15,16)

16 FORMAT (4X, '**********************

STOP

END
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APPENDIX I. 95 % LCB'S FOR DSBS ( EQUAL PROBABILITIES)

Table 18. 95 % LCB'S FOR DOUBLE SAMPLING BONUS SYSTEM

FAILURE 95 % LCB FAILURE 95 % LCB
VECTOR VECTOR

(0000) 1.0000000 (000 1 ) 0.9099184

(0002) 0.8706521 (00 10) 0.9375849

(0 0 1 1) 0.8808635 (0 0 1 2) 0.8387057

(00 2 0) 0.8968240 (002 1) 0.8528913

(0 0 2 2) 0.8141473 (0030) 0.8717731

(0 0 3 1) 0.8281843 (0032) 0.7881665

(0040) 0.8422214 ( 004 1 ) 0.8021229

( 0042) 0.7645337 ( 0 1 00) 0.9099184

( 0 1 0 1 ) 0.8548708 ( 0 1 02) 0.8224728

(0 1 10) 0.8808635 (0 1 1 1 ) 0.8368122

(0 1 12) 0.8010584 (0 1 20) 0.8548636

(0 1 2 1) 0.8131180 (0 1 22) 0.7779465

(0 1 30) 0.8294836 (0 1 3 1) 0.7867751

(0 1 32) 0.7541937 (0 1 40) 0.8001103

(0 1 4 1) 0.7624319 (0 1 42) 0.7305543

(0200) 0.8657608 (020 1 ) 0.8224728

(0202) 0.7905909 (02 10) 0.8387058

(02 1 1) 0.7996263 (02 12) 0.7653871

(0220) 0.8154084 (022 ) 0.7777317

( 0222) 0.7414687 (0230) 0.7881665

(02 3 1 ) 0.7541937 (0232) 0.7210189

(0240) 0.7624319 (024 1 ) 0.7326533

(0242 ) 0.6996729 (1000) 0.9945652

(100 ) 0.9099184 (1002) 0.8706521
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Table 19. 95 % LCB'S FOR DOUBLE SAMPLING BONUS SYSTEM
FAILURE FAI LUREFIUE95 % LCB FIUE95 % LCB
VECTOR VECTOR

(1010) 0.9375849 (1011) 0.8808635

1 0 1 2 ) 0.8369564 (1 02 0) 0.8968240

I(i012 I 0.8519021 (1 02 2) 0.8111921

1030) 0.8717731 (1031) 0.8258852

(1032) 0.7881665 (1 040) 0.8422214

(1 04 1) 0.8001103 (1 042) 0.7631623

(I 1 00) 0.9099184 ( I 1 01) 0.8548708

(1 1 02) 0.8224728 ( 1 10) 0.8808635

(I 1 11) 0.8368122 ( 1 1 12) 0.8002886

1 I 20) 0.8528913 ( 1 2 1) 0.8121204
( I 2 2 ) 0.7768002 ( 1 1 30) 0.8258852

(1 1 31) 0.7862302 ( 1 1 32 ) 0.7532073

( 1 40) 0.8001103 ( 14 1 ) 0.7616678

(1 1 42) 0.7295684 ( 1 200) 0.8657608

( 120 ) 0.8224728 ( 1 202) 0.7872553

( 1 210) 0.8387058 ( 1 211) 0.7987179

( 1 212) 0.7626535 ( 1 220) 0.8130434

( 1 221) 0.7758973 ( 1 222) 0.7406143

( 1 2 30) 0.7860773 ( 1 231) 0.7538874

( 1 232) 0.7200024 ( 1 240) 0.7624319

( 1 241) 0.7309083 ( 1 242) 0.6994067

( 2 000) 0.9891304 (2001) 0.9099184

( 2002) 0.8657608 (2010) 0.9324048

(20 1 1) 0.8808550 (20 12) 0.841966
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Table 20. 95 % LCB'S FOR DOUBLE SAMPLING BONUS SYSTEM

FAILURE 95 % LCB FAILURE 95 % LCB
VECTOR VECTOR

( 2 0 2 0) 0.8968240 ( 2 0 2 1) 0.8499787

(2 0 2 2) 0.8110244 (2 0 30 ) 0.8717731

(2 0 3 1) 0.8247706 (2 032) 0.7845937

(204C) 0.8422214 (2041) 0.8001103

(2042) 0.7624320 (2 100) 0.9099184

(2 10 1) 0.8548708 (2 102) 0.8224728

(2 1 1 0) 0.8808550 (2 111) 0.8362838

(2 1 12) 0.8003395 (2 120) 0.8519021

( 2 1 2 1) 0.8121204 (2 1 22) 0.7750615

( 2 1 30) 0.8258852 (2 1 3 1) 0.7846695

( 2 1 32) 0.7517914 (2 1 40) 0.8001103

(2 1 4 1) 0.7605843 (2 1 42) 0.7284731

(2200) 0.8608695 (220 1 ) 0.8222825

(2202) 0.7860733 (22 10) 0.8341965

(22 11) 0.7965909 (22 12) 0.7626535

( 2220) 0.8110244 (2221) 0.7750614

( 2222) 0.7401020 (2230) 0.7845957

(223 1 ) 0.7519901 (2232) 0.7188347

(2240) 0.7611454 (224 1) 0.7295684

(2 2 4 2) 0.6975686
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APPENDIX J. DOUBLE SAMPLING BONUS SYSTEM WITH EQUAL

PROBABILITIES

Table 21. DSBS (EQUAL PROBABILITIES) LCBFB = 0.825

LOWER CONFIDENCE BOUND FOR BONUS IS 0.825

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.008 0.9375 0.030 0.9450 0.059

0.9500 0.079 0.9600 0.172 0.9700 0.351

0.9750 0.487 0.9800 0.632 0.9850 0.799

0.9900 0.920 0.9950 0.982

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILMES; LCBFB = 0.825

U

w
0.

cn
z d
o

0.92 0.94 0.96 O.98
PROBABILmES

Figure 5. Double Sampling Bonus System With LCBFB = 0.825
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Bonus percentages are tabulated and plotted below with LCBFB 0.850

Table 22. DSBS (EQUAL PROBABILITIES) LCBFB = 0.850

LOWER CONFIDENCE BOUND FOR BONUS IS 0.850

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.007 0.9375 0.025 0.9450 0.050

0.9500 0.063 0.9600 0.144 0.9700 0.293

0.9750 0.423 0.9800 0.565 0.9850 0.738

0.9900 0.887 0.9950 0.970

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILmES; LCBFB = O.850

0

0

IjJ

0

IIJ

0.92 0.94 O.96 0.96

PROWN1IFE

Figure 6. Double Sampling Bonus System With LCBFB =0.850
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Bonus percentages are tabulated and plotted below with LCBFB 0.875

Table 23. DSBS (EQUAL PROBABILITIES) LCBFB = 0.875

LOWER CONFIDENCE BOUND FOR BONUS IS 0.875

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.007 0.9375 0.023 0.9450 0.045

0.9500 0.057 0.9600 0.122 0.9700 0.236

0.9750 0.353 0.9800 0.487 0.9850 0.643

0.9900 0.799 0.9950 0.941

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILMES; LCBFB = 0.875

0

0

0

0.92 0.94 0.96 0."

PROBAMMUTES

Figure 7. Double Sampling Bonus System With LCBFB =0.875
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Bonus percentages are tabulated and plotted below with LCBFB 0.900

Table 24. DSBS (EQUAL PROBABILITIES) LCBFB 0.900

LOWER CONFIDENCE BOUND FOR BONUS IS 0.900

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.002 0.9375 0.010 0.9450 0.020

0.9500 0.027 0.9600 0.052 0.9700 0.138

0.9750 0.212 0.9800 0.319 0.9850 0.4S6

0.9900 0.671 0.9950 0.872

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILMES; LCBFB = 0.900

:1=

IL
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0.92 0.94 0.96 0.98

PROBABILITIES

Figure 8. Double Sampling Bonus System With LCBFB = 0.900
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Bonus percentages are tabulated and ploted below with LCBF'B 0.950

Table 25. DSBS (EQUAL PROBABILITIES) LCBFB = 0.950

LOWER CONFIDENCE BOUND FOR BONUS IS 0.950

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.002 0.9375 0.010 0.9450 0.018

0.9500 0.022 0.9600 0.045 0.9700 0.107

0.9750 0.163 0.9800 0.237 0.9850 0.362

0.9900 0.502 0.9950 0.695

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILmES; LCBFB = 0.950

04
U'

Zn

D
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0.92 0.94 0.96 0.96
PROMADLMfES

Figure 9. Double Sampling Bonus System With LCBFB =0.950
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Bonus percentages are tabulated and ploted below with LCBFB 0.999

Table 26. DSBS (EQUAL PROBABILITIES) LCBFB = 0.999

LOWER CONFIDENCE BOUND FOR BONUS IS 0.999

PROB.'S BONUS % PROB.'S BONUS % PROB.'S BONUS %

0.9200 0.002 0.9375 0.007 0.9450 0.010

0.9500 0.011 0.9600 0.028 0.9700 0.067

0.9750 0.106 0.9800 0.166 0.9850 0.274

0.9900 0.407 0.9950 0.626

DOUBLE SAMPLING BONUS SYSTEM

EQUAL TEST PROBABILmES; LCBFB = 0.999

0

Iz

0.92 0.94 0.96 0.98

PROBABILMTIES

Figure 10. Double Sampling Bonus System With LCBFB = 0.999
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APPENDIX K. 95 % LCB'S FOR DSBS (DIFFERENT PROBABILITIES)

Bonus percentages are tabulated and ploted with different probabilities.

LCBFB = 0.825

Table 27. DSBS (DIFFERENT PROBABILITIES) LCBFB 0.825

0.950 0.975 0.990 0.995

0.950 0.079 0.364 0.632 0.689

0.975 0.099 0.487 0.831 0.882

0.990 0.109 0.550 0.920 0.968

0.995 0.110 0.558 0.934 0.982

DOUBLE SAMPLING BONUS SYSTEM
LCBFB =0.825

en.
z

0

-p .......

Figure 11. Double Sampling Bonus System With LCBFB = 0.825
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Bonus percentages are tabulated and plated with different probabilities.

LCBFB =0.850

Table 28. DSBS (DIFFERENT PROBABILITIES)_LCBFB =0.850

0.950 0.975 0.990 0.995

0.950 0.063 0.320 0.6 12 0.680

0.975 0.077 0.423 0.802 0.871

0.990 0.083 0.476 0.887 0.957

0.995 0.084 0.483 0.900 0.970

DOUBLE SAMPLING BONUS SYSTEM

LCBFB 0.850

0

z

0 ...... 
.-:......

. .. ...... .....

4*.......

Figure 12. Double Sampling Bonus SysteraI With LCBFB = 0.850
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Bonus percentages are tabulated and ploted with different probabilities.

LCBFB = 0.875

Table 29. DSBS (DIFFERENT PROBABILITIES) LCBFB =0.875

0.950 0.975 0.990 0.995

0. 9 50 0.057 0.277 0.566 0.664

0.975 0.067 0.353 0.72 1 0.846

0.990 0.072 0.388 0.799 0.929

0.995 0.072 0.392 0.809 0.941

DOUBLE SAMPLING BONUS SYSTEM

LCBF8 0.875

0

C'44



Bonus percentages are tabulated and ploted with different probabilities.

LCBFB = 0.900

Table 30. DSBS (DIFFERENT PROBABILITIES) LCBFB 0.900

0.950 0.975 0.990 0.995

0.950 0.027 0.164 0.470 0.605

0.975 0.031 0.212 0.603 0.778

0.990 0.034 0.235 0.67 1 0.860

0.995 0.034 0.238 0.679 0.872

DOUBLE SAMPLING BONUS SYSTEM
LCBFB 0.900

0

a.,*9

........ .......
O 8

... .. .
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Bonus percentages are tabulated and ploted with different probabilities.

LCBFB = 0.950

Table 31. DSBS (DIFFERENT PROBABILITIES) LCBFB =0.950

0.950 0.970 0.990 0.995

0.9 50 0.022 0. 126 0.369 0.506

0.975 0.029 0.182 0.502 0.686

0.990 0.029 0.182 0.502 0.686

0.995 0.029 0.185 0.509 0.695

DOUBLE SAMPLING BONUS SYSTEM
LCBFB - 0.950

90

IL~

ZcT CA6-

Figure IS Double Smpling..nus.Syste.With .. B......95
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Bonus percentages are tabulated and ploted with different probabilities.

LCBFB = 0.999

Table 32. DSBS (DIFFERENT PROBABILITIES) LCBFB =0.999

0.950 0.970 0.990 0.995

0. 9 50 0.011 0.057 0.174 0.229

0.975 0.021 0.106 0.302 0.406

0.990 0.024 0.151 0.407 0.570

0.995 0.026 0.161 0.463 0. 626

DOUBLE SAMPLING BONUS SYSTEM

LCBFB =0.999

d

CL
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DC~4
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...................... ........ . . . . . . . . . . . . . . . . .
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4 Figure 16. Double Sampling Bonus System Wtith LCBFB =0.999
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